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Final Report

Photomultiplier Tube Amplifier-Discriminator

1.0 INTRODUCTION

In accordance with the requirements of Contract No. 951585,

the amplifier-discriminator system shown in Figure 1.0-I was

designed, constructed and tested. This report describes the

results of that development program.

The amplifier receives signals from photomultiplier tubes

looking at NaI crystals and converts them into pulses suitable

for pulse-height analysis. Appropriate gain and pulse shaping

are provided by the amplifier for the observation of gamma rays

with energies in the i00 KeV to I0 MeV range.

A discriminator connected to the amplifier output provides

a pulse when the amplifier output signal exceeds 1% of full

scale (I0 V). In this way an accurate determination of count-

ing rates above this threshold can be made independently of

analyzer dead time. Also coincidence gating and other such

logic functions can be performed using this pulse.

2.0 AMPLIFIER DESIGN ANALYSIS

The amplifier described herein employs the operational-

amplifier configuration with pulse shaping performed by the

feedback elements. A heavy reliance on negative feedback pro-

duces a response nearly independent of temperature, amplitude

or counting rate. The results of a detailed analysis of the

expected performance of the amplifier is given in this section.

Actual measured values consistent with the theoretical behavior

are presented in Section 4.

1.0-I
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Transistors Q1 and Q2 form a double-differential ampli-

fier, while transistors Q3 and Q4 provide a bootstrapped, com-

plementary emitter-follower output stage. The grounded-base

stage Q5 reduces the Miller capacity of the second stage,

resulting in increased amplifier bandwidth and reduced pro-

blems with rate limiting. The transistor operating biases are

determined by external feedback via Rf2, which is also invol-

ved in the pulse-shaping and pulse-gain determination. The

double-differential configuration was chosen to achieve a

high degree of dc output-voltage stability. Because the oper-

ating currents of Q2a and Q2b are approximately equal, their

base voltages are also nearly identical, resulting in very

closely matched collector currents and voltages for Qla and

Q2a. Because Qla and Q2a are a tightly matched pair and have

the same dc resistance connected to their bases, their base

currents and voltages are also nearly equal, providing a large

degree of temperature compensation of output voltage drifts.

In this way, subsequent circuits can be direct-coupled to the

amplifier output without markedly upsetting their bias stabil-

ity. Thus, the advantages of a direct-coupled system in reduc-

ing baseline shifts caused by pulse-tail pile-up can be real-

ized in practice.

The pulse shape and gain are determined by the feedback

elements (Rfl, Lfl, Rf2 and Cf2). The placement of the pulse-

shaping networks in the feedback loop allows the amplifier dy-

namic range to be larger than that which would result if pulse

shaping were performed after the amplifier output. As a result

power is not wasted in unnecessary standing voltages or currents,

and the entire amplifier standby power becomes only 15.7 mW.

2.0-2



In order to provide a gain characteristic which is only

weakly dependent on temperature, output amplitude or counting

rate, all active elements should be enclosed within the nega-

tive feedback loop and their operating biases should be kept

nearly independent of output amplitude. Therefore, the output

emitter follower, which provides a low output impedance for

driving subsequent circuits, is enclosed in the feedback loop.

In addition its source resistor RA is bootstrapped via CA so

that the component of current in Q2a used for driving resis-

tive loads is not output-amplitude dependent. In order to
reduce the variations in the component of this current for

capacitive loads, transistors with low values of Cob and high

values of fT are used for Q3 and Q4. Otherwise the capaci.ty
at the collector of Q2a could cause rate-limiting effects,

which produce either non-linearities or the need for a larger

standing current in Q2 and the concurrent power increase.

The complementary configuration provides a low output

impedance 2or both the positive and negative portions of the

output pulse. If the PNP transistor were not present, then

capacitive loads could be driven negatively only by the stand-

ing current in Q3. This current would result in standby power,

mostly eliminated by the complementary emitter follower. The
1-Kilo-ohm resistors in the collectors of Q3 and Q4 both aid

in decoupling pulse currents from the power supply and also
protect the output stage in the event of a short circuit.

Because the amplifier is direct-coupled and its output rests at

-6 V, (chosen for convenience in the discriminator design), out-

put shorts to ground could draw damaging currents in the output
stage. However, the I-K resistor limits this fault current to

12 mA by forcing Q4 to saturate. As a result power dissipa-

tion remains well within tolerable limits, and no damage is

done to the transistor. The complementary configuration is

2.0-3
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also self-protecting against excessive emitter-base voltages ,

because the emitter-base junction of one transistor acts as

a diode clamp for the other. Similarly, the resistor-diode-

capacitor configuration at the input (Rp, Dp, Cp)'pr0tects

the input transistor from damage in the event that a high

voltage pulse from the photomultiplier supply is applied to

the input. Such pulses can arise if the phototube anode is

placed at a positive high-voltage potential and capacitively

coupled to the amplifier.

2.1 Pulse Shaping and Approximate Impulse Response Function

The correct choice of amplifier pulse shape is essentially

a compromise between pulse pile-up effects and independence of

the NaI scintillation-decay time constant. A detailed analy-

sis of the effects of pulse shaping on nuclear detection sys-

tems is given in Appendix B.

From this analysis, it becomes apparent that the optimum

system, from the standpoints of low pulse pile-up and low noise,

employs amplifiers with no ac couplings producing secondary

time constants. In the presence of secondary time constants,

at least two differentiating networks must be present to pre-

vent the coupling capacitors from accumulating a large average

charge producing baseline shifts. Because the Fabri-Tek pulse-

height analyzer contains several such secondary time constants,

double differentiation is chosen for this amplifier. No secon-

dary time constants are present in the amplifier so that use

with a direct-coupled analyzer is possible. Direct coupling to

the discriminator is provided, and protective components pre-

vent damage in the event that the output is short circuited.

The leading edge of the pulse is shaped by integrating

networks so that the peak amplitude does not depend strongly on

the amplifier cut-off frequency. Also, smoothly rising pulses

require less standing current, and thus less power, to prevent

2.1-1



rate limiting and the associated non-linearities. The re-

sulting pulse possesses a nearly symmetrical positive portion

with a peak at 1.4 us and a width above the base line of 3.2 us.

A negative portion following the positive portion has an equal

area, so that the total charge transmitted by the pulse is
zero.

A block diagram of the amplifier and the pulse-shaping

networks is shown in Figure 2.1-1. A capacitor (Cf3) in par-

allel with Rfl has been neglected in this figure. This capaci-
tor reduces the initial slope of the outputpulse and increases

the peak amplitude by 8%. Its principal functions are the re-

duction of rate limiting and the prevention of the coupling of
fast signaIs to the amplifier through the stray capacity across
LFI.

If the voltage gain (HV) of the amplifier is infinitely

large, then the input voltage (VI) of the amplifier _ approxi-
mately zero, and the output voltage is related to the input
current by

Vout Rf2 [I + p¼] 2T
(2 l-l)

i s [1+ 2 [1 + p½12 ,.

where p = Laplace transform variable

= shaping time constant

Cf3Rfl < <

2 1-2
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Critical damping has been assumed in the above formula.

condition requires that

This

Lfl

2
Cfl Rfl

4
(2.1-2a)

Cf2' = Cf2 (2.1-2b)

Rf2' = Rf2 (2.1-2c)

Also, to obtain nearly symmetrical waveforms we have chosen

and

-t = Rf2Cf2 (2. i-4)

If the duration of the input current pulse is short com-

pared to the shaping time constant, it can be approximated by

i s _ Q 5 (t) (2.1-5)

resulting in an output pulse given by

Vout _ C_ 2 - _ (t)]

2 .i-4

et'[2t]}e-2t/_

(2.1-6)



This waveform has a peak at t = 0.61 _ with a peak value of

0.528Q For the values used in this amplifier,
C "
f2

Vpeak = 0.053 V/pC

Tpeak = 1.0 us

(2.1-7a)

(2.1-7b)

The presence of Cf3 modifies these values to

Vpeak = 0.057 V/pC (2.1-8a)

T = 1.4 us (2.1-8b)
peak

This pulse shaping is similar to the double-differentiated,

single-integrated shaping described in Appendix B. An increase

in gain of 14% and a slightly more symmetrical pulse result

from the bridged -T feedback network compared to simple RC

feedback. Because of the similarity of these two shaping net-

works, the pulse pile-up theory developed in Appendix B will

be applied to this amplifier. Evaluating equation 2.2_2-26 of

Appendix B for this pulse shape and assuming that the pulse-

height analyzer busy time is long compared to _, one obtains

for the average peak shift AV

where

AV

-- _= 3.5 (RT) 2

V
(2.1-9)

R = average counting rate

V = average input pulse height

2.1-5
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For R = 10 4 and T = 1.6 us, then

AV

- 0.09% (2.1-10)
V

Secondary ac-couplings in the pulse-height analyzer may

increase the peak shift and may cause additional peak smear-

ing at high rates, particularly if the rates themselves are

variable. The use of a doubly-differentiated waveform reduces

this effect as much as possible withoUt complicated circuitry.

2.2 Stability Against Oscillation

In order to produce an amplifier with a high inherent

gain stability, a large amount of negative feedback for fre-

quencies centered about the corner frequency given by the re-

ciprocal of the shaping time constant is required. As a result,

the frequency of gain cross-over approaches I0 MHz, requiring

careful analysis if the amplifier is not to oscillate. The

basic theory of feedback amplifiers, together with the poles

and zeros resulting from several active networks, is given in

Appendix A. In this section this theory will be applied to

the amplifier.

An equivalent circuit of the amplifier _ given in Figure

2.2-1, using a voltage source for the input. This voltage source

is the Thevenin equivalent of the current source representing

the phototube anode, and its magnitude is given by

Vs = Rfl is (2.2-1)

2.2-1
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For the purpose of this analysis the amplifier will be divided

into two halves at the grounded-base stage (Q5). The double-

differential amplifier will be represented by its transfer

admittance YA' given by the ratio of the signal current at

the collector of Q5 to the signal voltage at the base of Qlb.

The emitter follower transforms this current signal into an

output voltage at the emitters of Q3 and Q4, and the ratio of

this voltage to the output current from the double-differential

amplifier will be called ZB.

The basic theory of feedback amplifier design is pr e -

sented in Section 2 of Appendix A. The analysis given in Sec-

tion 2.3 (Appendix A) shows that the behavior of the feedback

factor in the neighborhood of gain cross-over determines the

stab$1ity of the amplifier. [The frequency of gain cross-over

is that frequency for which the magnitude of the complex feed-

back factor is one. It is often convenient to refer to a gain

cross-over time (tc) , defined as the reciprocal of the angular

gain cross-over frequency (_c). ] For this amplifier the feed-

back factor is given by

-YA ZB Yf2
F =. {2.2-2)

Yfl + Yf2 ÷ YINA

where the gains and admittances are defined by Figure 2.2-1•

The amplifier will be stable if the slope of the loga-

rithm of the feedback factor plotted as a f_nction of the

logarithm of the angular frequency does not become less than

-2 for frequencies near the gain cross-over frequency. This

criterion implies that the number of poles must not exceed

the number of zeros by more than two in this frequency region.

2.2-3



As further calculation will show, the major region of concern

lies for times from 1 ns to I00 ns and that the gain cross-

over time is of the order of I0 ns. Thus, poles and zeros

smaller than about 0.5 ns will be neglected in the analysis,
while poles and zeros larger than 200 ns will be considered

completely dominant compared to one. Thus,

Cfl
Yfl -- -- (2.2-3)

pT 2

pT

Yf2 = _ (2.2-4)

Rf2

T 1 Cfl

Rfl Cfl

2
= Rf2 Cf2 = 1.6 us

(2.2-5)

M o = 2Rf2/Rfl = 132 (2.2-6)

and the feedback factor becomes approximately

-YA ZB
F -- y M (2,2-7)

INA o
1 + +

P_f2 (p_)2

(Notice that we have written the feedback factor as a

function of the Laplace operator, p, instead of as a function

of frequency, _. These two quantities are simply related by

P = j_ (2.2-8)

2.2-4



Because the time constants involved in this analysis are

easily represented by RC products, we prefer the time (or

Laplace) domain rather than the frequency representation. In

evaluating approximations, the quantity p will be considered
to have units of reciprocal time.)

For times for which

t << = 140 ns (2.2-9)
0

The feedback factor simplifies to

-YA ZB

.F _ y (2.2-10)
INA

1 +
PCf2

We will first calculate the transfer impedance of the

emitter follower using Section 4.2 of Appendix A. The output

load admittance is almost purely capacitive, caused by the

interconnecting cable, because the input resistance of the

pulse-height analyzer is I00 K. Thus, we Will approximate

YL2 _ PCL2 (2.2-11)

where CL 2 will be allowed to vary between 63 and 263 pF.

The biasing of the output emitter follower is such that

Q3 conducts with Q4 barely cut:off, except during the negative-

going portions of the output pulse. For the remainder of this

analysis, we will neglect the resistive component of Ye4 and

include the emitter-transistion capacity of Q4 in Ye3. This

2.2-5



approximation is equivalent to setting the _ansconductance

(ge4) of Q4 equal to zero, as results when its collector cur-
rent vanishes.

Because the emitter follower is bootstrapped, the vari-

able transformation described in Section 4.2.1 of Appendix A
will be performed. Thus

RA
83' = 83 _(2.2-12)

B3re3 + RA

1
YL" = YL' + (2.2-13)

RB

The total load admittance, YL" is given by

YL' +Y + - C) += YLI f2 P (Cob c

PCL2

1 + PRL2CL2

(2.2-14)

where

1 1

YL1 = _ + + PCe4
RL RD1

Ce4 = emitter-collector capacitance _f Q4

R L = emitter-follower load resistance

RDI discriminator input resistance

2.2-6



If one defines

1 1 1 1

GLI = -- + -- + -- + --

Rf2 R B RL RDI

(2.2-15)

-- - + + (2.2-16)CL I Cob Cc Cf2 Ce4

1

GL2 = , (2.2-17)
RL2

then

YL"
GL1GL2+P(CL1GL2+CL2GLI+CL2GL2)+p2CL1GL2

GL2 + PCL2

(2.2-18)

and the analysis given in Section 4.2.3 of Appendix A applies

directly. The transfer impedance, given by equation 4.2.3-2

(Appendix A), becomes

133' RL (I + pz 3)(1 +'p )
ZB = 1 _ _L2 (2.2-19)

1 + pA + p2B + p3C

where

1

RLI =

GLI

_3 = Ce3 re3

_L2 = RL2 CL2

C 1 Cob 3 + Cob 4 + Cob 5

2.2-7



A = B3' [C1 RLI + (Ce3 + CI) re3]

+ (CL1 + CL2) RL1 + CL2 RL2

B = B3' RL1 C1 (_a3 + TL2) + 83 ' re3 (Ce3 + C I)

(_LI + _L2 + CL2 RLI) + RLI CLI _L2

C = re3 TL2 CI(Ce3 + CI)

Many "of the quantities in the above formulas are fixed

and easily determined. The values of these fixed quantities

are given in Table 2.2-1. For the calculation of Ce3 , the

alpha cut-off frequency of the 2N3227, including the emitter-

transition capacitance of Q4, was assumed to be about 500 MHz

at a collector current of 1 mA or higher and to be 200 MHz at

200 vA. Including 1 pF for the emitter transition capacitance

of Q4, we obtain a value for Ce3 of 6 pF for a collector cur-

rent of 200 vA, and above 1 mA, the alpha time constant, _3 )

was fixed at 0.3 ns.

The remaining quantities depend on load, transistor type

and operating bias, or temperature. For example, if the out-

put signal exceeds 6 V, Q5a at the discriminator input satur-

ates and RLI becomes 4.9 K. Otherwise, RLI approaches its

maximum value of 9.4 K. Similarly, we will consider a range

of re3 extending from 125 _ to near zero. The current gain,

has a minimum value at room temperature of I00, which could83 ,

2.2-8



Table 2.2-1

Fixed Quantities in the Emitter-Follower Calculation

Quantity

Rf2

RB

RL

RL2

CL 1

C
ob3

Cob4

Cob 5

C1

Value

165 K

iS K

15 K

30 K

ISO

12 pF

3 pF

1.5 pF

1.2 pF

5.7 pF

2.2-9



decrease by a factor of two at low temperatures. This

parameter will be considered over a range extending from

50 to 200. The modified current gain, B3' , then ranges

from a minimum value of 35.2, produced when _3 is 50 and

re3 is 125 _, to a maximum value of 200 at high collector

currents and high temperatures.

For all cases both RL2 and re3 are small compared to

RLI , and _3' is large compared to one. Furthermore, CLI can

be neglected compared to _3' CI' while T 3 is small compared

to C 1 RLI. With these approximations,

A _ 83' RLI IC 1 + CLI + CL2

L B3 '

(2.2-20)

Because the minimum value of A exceeds 2 us, which is long

compared to the time of gain cross-over, we will neglect one

compared to pA and write for the transfer impedance

(i + pT 3) (i + P_L2 )

ZB --- (2.2-21)

PCiN3(l + pTA)(i + p_B)

where

CIN 3 = C 1 +

CLI + CL2

B3 '

_A + _B =

•ATB =

CI_L2 + (CLI + CL2)(_ a3 + Clre3)

C
IN3

•L2CI(Z 3 + CLlre3)

CIN3

_L2 >> _a3 2.2-I0



For currents in excess of about 3 mA, r e3
small so that

becomes sufficiently

83 ' _ B3 (2.2-22)

and

_A ÷ _B

CL2(RL2CI + _a3 ) + CLITa3
(2.2-23)

CIN3

• A_B .-_

TL2 Cl _a3

CIN3

(2.2-24)

where

za3 = 0.3 ns

Several values of the above quantities are given in Table

2.2-2 for different values of B3 and CL2. Because ZA and

_L2 are closely equal, and because za3 and ZB are small and

also nearly equal, the transfer impedance of the emitter fol-

lower at high currents is almost purely capacitive and is

given by

1

YB -- (2.2-25)

PCIN3

For the collector current at its minimum value of 200 vA,

re3 becomes 125 _, and 83 ' ranges from 35.2 for 83 = 50 to 75

2.2-11



Table 2.2-2

Emitter-Follower Values at High Collector Currents

Quantity

CIN3

Ta3

_L2

_A

_B

83 = 50

CL2 = 63 pF

7.2 pF

0.3 ns

9.45 ns

10.4 ns

0.22 ns

CL2 = 263 pF

ii. 2 pF

0.3 ns

39.4 ns

27.2 ns

0.22 ns

83 = 200

CL2 = 63 pF

6.1 pF

0.3 ns

9.45 ns

12.3 ns

0.22 ns

CL2 = 263 pF

7.1 pF

0.3 ns

39.4 ns

43.1 ns

0.22 ns

YB

(1 + p'r ) (1 + )_3 P_L2

PCIN3(I + p_A)(l + p_B )

2.2-12
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for B3 = 200. For values of capacitance in picofarads and

for time constants measured in nanoseconds, then

_A + _B

_A _B

2.32 CL2 + 17.6

CIN3

1.92 C
L2

CIN3

(2.2-26)

(2.2-273

where

= 0.75 ns
a3

Several values of the above quantities are given in Table

2.2-3. In this case T 3 and TB nearly cancel, but XL2 and

_A are considerably further separated. Therefore, at low cur-

rents we will approximate YB by

(I + P_L2 )

YB _ (2.2-28)

PCIN3(I + p_A )

We now turn to the calculation of the response function

of the double-differential amplifier (QI, Q2, Qs). The basic

theory of such an amplifier is given in Section 5 of Appendix A.

From equation 5.2.1-6 (Appendix A), the voltage gain becomes

-gelge2

MVA _ I } (2.2_29)
2 Y3'Y2 '' + ge2Yc22

2.2-]3



Table 2.2-3

Emitter-Follower Values at Low Collector Currents

Quantity

c
IN3

za3

TL2

TA

_B

B3

CL2 = 63 pF

7.8 pF

--So

CL2 = 263 pF

13.2 pF

83 = 200

CL2 = 63 pF

6.7 pF

0.75 ns

9.45 ns

20.2 ns

0.77 ns

0.75 ns

39.4 ns

46.7 ns

0.82 ns

0.75 ns

9.45 ns

23.3 ns

0.77 ns

CL2 = 263 pF

9.2 pF

0.75 ns

39.4 ns

67.5 ns

0.82 ns

YB

(i + p_3)(l + PZL2 )

PCIN3(1 + p_A)(1 + pT B)

2.2-14



where the subscripts refer to the transistor numbers given in

Figure 1.0-i and are different from those used in Appendix A.

Thus,

gel = transconductance of Q1 (2.2-30a)

ge2 = transconductance of Q2 (2.2-30b)

Ycl = collector-base admittance of Q1 (2.2-30c)

Yc2 = collector-base admittance of Q2 (2.2-30d)

Yel = base-emitter admittance of Q1 (2.2-30e)

Ye2 = base-emitter admittance of Q2 ('2.2-30f)

Y2 = external load admittance on the (2.2-30g)
base of Q2 and the collector of Q1

= external load admittance on the
collector of Q2

Y3 (2.2-30h)

The primed quantities are defined, by

Y2' = Y2 + Ycl + Yc2 (2.2-31a)

" = Y2 + Y + Y + (2.2-31b)Y2 cl c2 Ye2

Y3' = Y3 + Yc2 (2.2-31c)

Because the impedance at the emitter of the grounded-base

stage Q5 is negligibly small, and because the current gain of

Q5 is close to unity for all frequencies of interest, the trans-

fer admittance becomes

-gel ge2

YA = lira Y3 MVA = (2.2-32)

Y3 _ 2Y2"

2.2-15



For the remainder of this analysis, the resistive portion

of Yc will be neglected compared to the capacitive portion

because we are interested in times short compared to rcC c (_i0 _S).
Thus,

Ycl --- PCcl (2.2-33)

Yc2 = PCc2 (2.2-34)

and Y2" becomes

y I)

2

1 + P[C2R 3' + C e2'R3' + C2R2] + p2C2R2Ce2'R3'

R3'[I + PC2R2]

(z.z-3s)

where

R 3 '

R 3 62 re2

R3 + 62re2

' = C + C + Cc2Ce2 e2 cl

Ce2

T
_2

r
e2

The transfer admittance then becomes

YA

-I

RA

1 + PC2R 2

(I + pTc)(l + p_D)

(2.2-36)
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where Tc and TD are the roots of the quadratic in the numera-
2relre2

tor of equation for Y2" (2.2-35) and RA - R3 , .

Typical values of the parameters for the double-differ-

ential amplifier are given in Table 2.2-4. The values for the

emitter resistances are those at room temperature. Because

the emitter resistance is proportional to the absolute tempera-

ture, variations in r e of ±17% will exist over a 100°C tempera-

ture range. This variation has been neglected as being small

compared to the current-gain changes.

When B 2 has its lowest value of I00, then the quantities

in equation 2.2-36 become

R A = II _ (2.2-37)

t = 807 ns
C

= 12.8 ns
D

For S2 at its highest value of 400, then

RA = 3.5 _ (2.2-38)

C
2.46 us

= 13.2 ns
_D

For the calculation of the stability against oscillation,

we will consider • to be large compared to gain cross-over,
c
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Table 2.2-4

Parameters of the Double-Differential Amplifier

quantity

gel

rel

ge2

re2

R 2

B2

R 3

C
2

T
_2

Ce2

Ccl

Cc2

Ce2'

R2C 2

2.2-18

Value

2000 pmho

5OO

16,000 _mho

62.5

510

I00 to 400

61.9 K

i00 pF

2.0 ns

32 pF

0.8 pF

3+0 pF

35.8 pF

51 ns



so that

-(i + PC2R2)
YA _ (2.2-39)

PRA_c(l + p_D)

In this case YA is nearly independent of 82 and becomes approxi-
mately

-(i + p51ns)
YA =- (2.2-40)

(p8.74_-_s) (i + pl3ns)

The remaining problem is the calculation of the input

impedance of the double-differential amplifier. From equation

5.2.1-11 of Appendix A, the input admittance becomes

Yel
YINA = Ycl + --2 + YMI + Yx (2.2-41)

where

gel
Yel = -- + PCel

B 1

YMI = Ycl MVI _ PCcl MVI

PC x
y =

x 1 + P RxCx

The first stage voltage gain, MVI , is given by

gel

MVI = = -YA re2

2Y2"

2.2-19
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If the alpha cut-off frequency of Q1 is assumed to be

50 MHz at a collector current of 50 _A, then

Cel = 6.4 pF (2.2-43)

and for 81 = I00,

Gel81

gel

320 ns (2.2-44)

Therefore, gel/81 will be neglected in the remainder of this

analysis, giving for the feedback factor

-Cf2 YA ZB
F

Cel Cx

Cf2 + __ +Ccl + + CclMVI

2 1 + P_x

(2.2-45)

where

= C R = 24 ns
X X X

Expanding equation 2.2-42, one obtains

re2 I 1 + PC2R 2 }MVI = (I + p_c )(I + p_D)

(2.2-46)
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For times short compared to T

be used for YA' yielding

(_i _s), equation 2.2-40 can
C

(I + p51ns)

MVI m (2.2-47)
(pl40ns)(l + pl3ns)

Because of the small value of Ccl (0.8 pF) compared to Cx(47 pF)

and Cf2(10 pF), MVI Ccl is negligible compared to the other

capacitive components for all times shorter than about 0.5 _s.

Even for long times, the maximum value of MVI Ccl is about 14 pF,

+ +
which is not particularly significant compared to Cx Cf2

C
el

--_- + Ccl at 61 pF. As a result the term in MVI Ccl will be

neglected in the remainder of this analysis.

Then

F -
-a YA ZB (1 + p_x)

1 + pcz x
(2.2-48)

where

Cf 2

a = Ce I = 0.164

Cf2 +Ccl + _ + Cx

Cel

c = Cf2 + Ccl + 2 = 0.23
C
el

Cf2 + Ccl + _ + Cx
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Substituting the gains given by equations 2.2-28 and
2.2-39, one obtains for the feedback factor

a(l + P_L2)(l + pTX)(I + PC2R2)
F -- (2.2-49)

p2RA_cCIN3(I + pzA)(l + pTD)(i + PC_x)

The quantities in equation 2.2-4+9 are given in Table 2.2-5 for
the collector current of Q3 equal to 200 _A and in Table 2.2-6

for a value in excess of 3 mA. Also C is allowed to take onL2
its minimum value of 63 pF and a loaded value of 263 pF.

by
The time of gain cross-over for a 200 _A current is given

.RA Tc CIN3 _A _D
tc = (2.2-50)

a TL2 _x C2R2

Similarly for the higher current," the gain cross-over time

becomes

RA _c CIN3 _A _D c 7
= (2.2-51)

tc a_L 2 C2R 2

In both cases the time of gain cross-over is well re-

moved from additional poles which might cause oscillation. Be-

cause the quantities in equation 2.2-49 are mostly fixed by

external components and only depend weakly (L_±25%) on transis-

tor parameters, we conclude that this amplifier is not likely

to oscillate during reasonable excursions of temperature or

transistor parameters.
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Table 2.2.-5

Feedback Factor Parameters near Gain Cross-Over for Low Values

of the Collector Current of Q3

Quantity

a

tL2

T
X

C2R 2

RAT c

CIN3

TA

t D

CT
X

t C

83 = 50

CL2 = 63 pF

0.164

9.45 ns

24 ns

51 ns

8.74_-_s

7.8 pF

20.2 ns

13 ns

5.5 ns

9.5 ns

83= 200

CL2 = 263 pF

0.164

39.4 ns

24 ns

51 ns

8.74fl-_s

13.2 pF

46.7 ns

13 ns

5.5 ns

8.9 ns

CL2 = 63 pF

0.164

9.45 ns

24 ns

51 ns

8.74fl-_s

6.7 pF

23.3 ns

13 ns

5.5 ns

7.9 ns

CL2 = 263 pF

0.164

39.4 ns

24 ns

51 ns

8.74_-_s

9.2 pF

67.5 ns

13 ns

5.5 ns

5.7 ns

F
a(1 + P_L2)(1 + p-_x)(1 + PC2R2)

P2RAtcCIN3(I + p_A)(I + p_D )(I + PC_x)
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Table 2.2-6

Feedback Factor Parameters near Gain Cross-Over for High

Values of the Collector Current of Q3

Quantity

a

"_L2

T
X

C2R 2

RAT c

CIN3

•r A

TD

CT
X

t
C

83 = 50

CL2 = 63 pF

0. 164

9.45 ns

24 ns

51 ns

8.74_-vs

CL2 = 263 pF

0.164

39.4 ns

24 ns

51 ns

8.74_-vs

83

CL2 = 63 pF

0.164

9:45 ns

24 ns

51 ns

8.74_- vs

7.2 pF

I0.4 ns

13 ns

5.5 ns

5.0 ns

11.2 pF

27.2 ns

13 ns

5.5 ns

4.9 ns

6.1 pF

12.3 ns

13 ns

5.5 ns

4.6 ns

= 20O

CL2 = 263 pF

0.164

39.4 ns

24 ns

51 ns

8.74_-vs

7:1 pF

43.1 ns

13 ns

5.5 ns

3.8 ns

F
a(.1 + PTL2)(1 + p_x ) (1 + PC2R 2)

p2RAZcClN3(l + pzA )(I + pz D)(I + pc_ x)
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2.3 Gain Drifts

Gain drifts can arise from three principal sources.

First, in direct-coupled systems variations of the amplifier

output dc level contribute to offset changes. Second, drifts

in the amplifier pulse gain cause variations in the slope of

the transfer characteristic. Third, non-linearities at high

levels caused by changing feedback factor or rate limiting

produce unstable deviations from an ideal and predictable

response.

2.3.i DC Level Stability

The configuration of the feedback networks was

chosen so that the voltage gain of this amplifier would be

unity for slowly varying signals. In this way the thermally

induced variations of thetracking of the emitter-base voltages

of Qla and Qlb are not amplified. In addition a very large

feedback factor is present for dc signals, resuming in a highly

predictable operating point. The 2N4044 is specified to have

a maximum mismatch of the emitter-base voltage tracking of

3 _V/°C, producing a 300 _V output voltage variation for a lOO°C

temperature swing. The double-differential amplifier configur-

ation ensures a close match of the operating conditions of Qla

and Qlb, so that the good tracking inherent in these transistors

can be achieved in practice.

A more serious contributor to output voltage drifts

arises from the base currents in the input stage. These currents

flow in the feedback resistor (Rf2) and in the resistor from the

base of Qla to the -6-V supply. If the two resistors were identi-

cal and if the two base currents were equal, then the amplifier

output voltage would be independent of the absolute value of

the current gain of the input stage. The 2N4044 is guaranteed

by the manufacturer to possess a beta match of 10% and should

be selected for a minimum gain of 300 at a collector current
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of 50 _A. Then, a 50% change in the matching would result

in a maximum output voltage shift of 1.24 mV. Such a change

is a conservative estimate of the effect of a 100°C tempera-

ture change on this transistor. It should be pointed out

that the 2N4044 contains two transistors deposited on the
same substrate and enclosed in the same can. Because both

transistors are manufactured at the same time in identical

diffusion environments and because they continue to be exposed

to the same environment and operating conditions throughout

their life, long term stability of this close matching can
be expected.

Because this amplifier has been designed with

similar techniques as those used in the construction of highly
stable power supplies, the output dc level drifts should be

conservatively less than 1.6 mV. Typically drifts of the order

of 0.5 mV can be expected over a 100°C temperature span, be-

cause the matching of the transistors usually well exceeds the

manufacturer's worst-case specification.
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2.3.2 Pulse-Gain Stability

The principal contributors to thermally induced

gain drifts are the components in the feedback networks and

the amplifier feedback factor.

The resistors and capacitors used in the feed-

back networks arethe most stable that are commercially avail-

able without special order• (An improvement in stability by

over a factor of two is possible if specially selected parts

are purchased.) Metal film resistors with a temperature Coeffi-

cient less than ±25 ppM/°C (T9)are employed in gain-deter-

mining networks. The capacitors use a compensated ceramic

dielectric to provide a temperature coefficient which is also

less than ±25 ppM/°C.

The inductor (Lfl) had to be specially constructed

in order to achieve high stability in a small size. The speci-

fications for this choke are given in Appendix C. For such an

inductor, the inductance depends purely on the number of turns

and on the permeability of the iron core. Because the number

of turns is fixed, the principal contributor to thermal drifts

is the permeability of the core. This core is constructed out

of stabilized permalloy powdered iron, which has a temperature

coefficient of permeability of less than ±25 ppM/°C.

It is also necessary to keep the series resistance

of the choke small compared to 2.49 K because of the large tem-

perature coefficient of resistance of copper wire. Typically

this resistance is less than 2 ohms. Similarly, the self-reso-

nant frequency must be large compared to the I00 KHz correspon-

ding to the pulse-shaping time constant. The resonance of

this inductor at 2.4 MHz is sufficiently high for this appli-

cation.
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The total gain variations from the feedback com-

ponents thus becomes less than ±50 ppM/°C. Typically some
compensation occurs, resulting in temperature coefficients in

the neighborhood of 25 ppM/°C or a gain drift of 0.25% for a
100°C temperature variation.

The remaining source of gain drifts arises from

the finite value of the amplifier feedback factor. Using the

analysis of the previous section and keeping only poles and

zeros which are significant compared to the shaping time con-
stant, one obtains for the feedback factor

(i + p_) 3

F --" (2.3.2-1)

p2CflRf2CIN3RA(I + p_c )

The gain correction producedby the finite feedback factor'is

given approximately by

AG

where G =

1

IFCj/_)I {2.3.2-2)

gain for infinite feedback factor

AG = gain change caused by a finite feed-
back factor

IFCj/' ) I magnitude of the feedback factor at an

angular frequency equal to the reciprocal
of the shaping time constant.

(In the above approximation, we have assumed that this pulse

amplifier is similar to a tuned amplifier with a center fre-

quency corresponding to the shaping time constant. This approxi-

mation has been justified in the past for similar pulse shap-

ing configurations after tedious numerical calculations. The

accuracy of the approximation is of the order of 30%.)
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Substituting equation 2.3.2-1 into equation
2.3.2-2, one obtains

AG 23/2 2- T

G C IRf2CIN3RA 
(2.3.2-3)

Several values for the gain shift are given in Table 2.3.2-1.

The "low beta" cases assume that both the gain of Q2 and of

Q3 are minimal together. Similarly the "high beta" cases are

for both gains at their maximum values. The difference of

these twocases then represents the difference between low and

high temperatures.

From this table several dependencies become appar-

ent. The maximum gain drift with temperature becomes 0.31% in

the case of 263 pF and low collector current. The effect of

changing the load capacity from 63 pF to 263 pF is an 0.2% gain

decrease at low temperatures and an 0.05% decrease at high

temperatures. These drifts, combined with those resulting from

variations of the feedback components, indicate that the worst-

case gain shift over a 100°C temperaiure range should be less

than 0.8%. Because of partial drift compensation, total gain

drifts over this range should typically be about 0.5%.

2.3.3 Linearity

As the magnitude of the output pulse increases,

the operating currents within the amplifier change, resulting

in varying feedback factor and concurrent changes in the dif-

ferential gain. As a result the gain for large amplitude

pulses maybe different than that for small amplitude pulses,

producing a non-linearity in the transfer characteristic.
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Table 2.3.2-1

Gain Changes (AG/G) Caused by a Finite

Feedback Factor

CL2 = 63 pF

CL2 = 263 pF

Low Beta

B2 = i00

B3 = 50

1 3 = 200 vA

-0.284%

-0.480%

1
3

> 3 mA

-0.262%

-0.408%

High Beta

B2 = 400

B3 = 200

13 = 200 vA

-0.127%

-0.174%

> 3mA
3

-0,115%

-0.134%

-I

IF(j/ )t
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One contributor to such non-linearities is the

dependence of the collector current of Q3 on output amplitude.

If the output pulse rises at a rate of i0 V in 0.8 _s (maxi-

mum slope for an output pulse of maximum amplitude), the cur _

rent supplied by Q3 into a capacitive load of 263 pF becomes

263 pF x I0 V

= = 3.3 mA (2.3.3-1)
i3 0;8 _s

_G
From Table 2.3.2-1 the gain correction -@-at low temperatures

changes from -0.48% for small currents to -0 408% for currents

of the above order of magnitude. As a result an 0.072% dif-

ferential non-linearity will result from this effect. For

higher temperatures or lower capacitances this effect is re-

duced.

Another contributor to such non-linearities arises

from the current required to swing the base of Q3 for large

output amplitudes. The resistive component of this current is

reduced by bootstrapping RA. However, the current required

to charge the capacitance at this base (CIN 3) must be supplied

from the second stage. The maximum value of this current

becomes

I0 V

i2c = 13.2 pF = 165 _A (2.3.3-2)
0.8 vs

If one includes about 135 _A for the base drive of Q3, 300 vA

of current swing must be available from Q2. Because 400 vA is

conducting through Q2b in the quiescent state, the 300 vA can

be safely supplied by the second stage.

This current unbalance results in a change in the

feedback factor, which is inversely proportional to the sum of
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the emitter resistances of Q2a and Q2b. This sum goes from
a value of 125 _ at balance to a value of 290 _ at maximum

unbalance. The worst-case non-linearity caused by this de-

crease in feedback factor becomes 0.66% when the load capacity

is 263 pF and the current gains are low. Typically differential

non-linearities of the order of 0.3% to 0.4% should be expected

for less extreme values of beta and load capacity.
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3.0 DISCRIMINATOR DESIGN ANALYSIS

The postamplifier is direct-coupled to a discriminator,

which is a biased one-shot with a stable threshold. With no

input signal, the amplifier rests at -6 V, and the base of

Q5a is biased 0.i V more negatively than the base of Q5b. Q6

is then cut off, and Q7 holds the output near +6 V. When the

positive output from the amplifier is large enough to over-

come the 0.I-V bias, QSa starts to conduct, eventually caus-

ing Q6 to conduct also. Positive feedback then produces re-

generation through C1 such that Q6 saturates, placing the

output near ground. After the charge on C1 decays, the cir-

cuit returns to its quiescent state with C1 being rapidly re-

covered by the diode DI. The proper pulse width can be obtained

by using a suitable value for CI.

With the exception of the timing capacitor (CI), this

circuit is also completely dc coupled to avoid baseline shifts

and unnecessarydead times at high counting rates. Thepower

required by this circuit is 4.9 mW.

3.1 Threshold Stabilit_

The stability of the discriminator threshold depends on

the gain and voltage matching of Q5a and Q5b. Readily avail-

able matched, differential-amplifier transistor pairs provide

a total drift of about 0.5 mV for temperatures between -50°C

and +50°C. Variations of the resistors in the bias network for

the base of Q5b add to the threshold drifts. If matched metal-

film resistors are used, drifts from this cause will be about

0.2% over a 100°C temperature span.

A further error results from the fact that the voltage

at the base of Q6 must swing by about 0.4 V, while the collec-

tor must swing about 0.5 V, in order for the output voltage to

start moving negatively. These voltage swings require that
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about 5 pC be delivered to the 3 pF collector-base capacitance

and to the 3 pF emitter-transition capacitance of Q6. The
effect of this charge on the threshold can be calculated as
follows:

The current flowing into the capacitance at the base of
Q6 can be written as

i c = i o - ic2 ic2 < I o (3.1-1)

i = 0 i > I
c c2 o

where

ic2 = current flowing into the collector of Q5b

I = bias current in R4
O

For input voltages (V) near the threshold voltage (VT) on the

base of Q5b, the collector current becomes

°

. Xc2

(V - VT)
I

o 2r (3.1-2)
e

where r is the emitter resistance of Q5, given by kT and it
e qI ° ,

has been assumed that the amplifier is biased such that the

collector current for V = VT is equal to the current in R4.

Thus, the current into the capacitance becomes

. (V - VT)

= V > V T (3.1-3)Zc 2r
e

ic = 0 V < V T
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When the input pulse is barely large enough to trigger

the discriminator, the peak input voltage (Vp) should nearly

equal the threshold voltage, if the discriminator is to have

a stable and passively determined threshold. Therefore, one

is led to use a simplified form for V(t) produced by expand-

ing it in a power series to second order about the peak. From

equation 3.2-39 of Appendix B, V(t) is given approximately

by

-t t
V t'(2-t') e

v(t) = P -6 (3.1-4)
O. 231 x 2

where

t' = t/_

V = peak value of the input signal pulse above -6 V
P

and the single-integrated, double-differentiated waveform has

been used as an approximation to equation 2.1-6. (Note that

both the amplifier and the discriminator are referenced tO

the -6-V supply.)

The power series expansion yields

V(t) -- Vp {I - 1.7 (tp' - t') 2} -6 (3.1-5)

where

t !

P
T time at which V(t) passes through

its first maximum

t !

P
= 0.586
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and the capacitor-charging current becomes

ic(t) _ 1 - X 2 Ix[ <

2r e

ic(t ) = 0 Ixl > 1

1 (3.1-6)

where

AV = amount by which the peak input voltage

exceeds the threshold voltage-= Vp - V T - 6

1.7 V (t t )2
X2_ = P P

AV_ 2

The charge supplied to the capacitor Qc then becomes

x=+l 2 (AV) 3/2Qc = i c (t) dt = .
3r "V i. 7V

x=-I e p

(3.1-7)

For Vp nearly equal to the difference of VT from -6 V, the
AV

relative threshold shift _ is given by
"T

aV (re Qc
1.56

VT-6 _VT-6

(3.1-8)
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For our proposed design

VT-6 = 0.I V (3.1-9a)

and

aV

V T- 6

= 5% (3.1-9b)

Over a 100°C temperature range changes in re.and changes

in Qc resulting from thermal variations in the emitter-base

voltage of Q6 will cause a 32% variation in the above cor-

rection, resulting in a threshold drift of 1.6%. This drift

is partially compensated by two effects. First, the diodes

in the collector circuit of QSb keep the voltage swing at the

base of Q6 relatively constant as a function of temperature.

Second, the fraction of the standing current in R6 which is

flowing in R4 at triggering varies with temperature because of

a small dependence on the forward voltage drops of Q5 and Q6.

This latter effect compensates for the charge variations caused

by the changing of the collector voltage swing of Q6 required

for triggering. The total drift from these effects is of the

order of 0.8 mV over a 100°C temperature range.

The total rms thermal drift of the discriminator thresh-

old level, including variations in the postamplifier dc out-

put voltage, is then estimated to be 1.6 mV .or 1.6% for tem-

peratures between -50°C and +50°C. The maximum, worst-case

drift becomes 3.2 mV or 3,2%. The drifts are given in Table

3.1-1.
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Table 3.1-1

Calculated Drifts in Discriminator Threshold

Cause

Emitter-base voltage

and current gain of Q5

Resistor drifts

Charge on the base of Q6, diodes

in the collector of QSb, and

emitter-base diode drifts of Q5

and Q6

Base current of Q1

Emitter-base voltage of Q1

Total rms drift

Fraction of I00 mV threshold

Magnitude

0.5 mV

0.2 mV

0.8 mV

1.2 mV

0.3 mV

1.6 mV

1.6%

Maximum drift

Maximum fraction of I00 mV

threshold

3.2 mV

3.2%

3.1-5
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3.2 Pulse Width and Recovery Time

The discriminator output pulse width is determined by

the output voltage, the bias level, and the decay time of CI.

when the discriminator is triggered, the voltage on thebase

of QSb with respect to the base of Q5a is given by

V 2 = -V o e -t/_f + VT (3.2-1)

where

V 2

V
O

t

Tf

= voltage on the base of Q5b

= amplitude of the output voltage swing.

= time from triggering

= R5C 1

If the input pulse has returned to zero by the time that the

voltage across C1 has decayed sufficiently for the circuit to

return to its quiescent state, then the pulse width (Tw) is

given by

V
_ O

, Tw xf In VT (3.2-2)

For the discriminator proposed here, Tf

comes 2.4 _s.

is 600 ns and T be-
W

When the discriminator returns to its quiescent state,

the capacitor C1 discharges through DI, leaving the base voltage

of Q5b initially near -5.8 V. (A hot-carrier diode is used for

D1 because of its low forward-voltage drop and fast recovery

time.) Thisshifted threshold voltage then decays toward the

nominal -6.0-V level with a 600-ns time constant. After 1.4 _s,

this error in the threshold will have decayed to about 20 mV.

The discriminator will then be ready to trigger on another input

pulse exceeding the threshold by a factor of 1.2.
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4.0 TESTING

Extensive tests were performed on the amplifier-dis-

criminator sYstem to verify proper operation of the circuits.

The procedure used in performing these tests is described

in Section 4.1, while the actual test results are presented

in Section 4.2.

4.1 Test Procedures

The basic test configuration is illustrated by Figure

4.1-1. Precise voltage pulses are generated by a mercury-

relay pulser, such as the RIDL Model 47-7. This pulser was

used with an external power supply and a precision resistive

divider, so that a reference voltage more accurately known

than that internal to the pulser could be generated.

The Voltage pulses were converted to current pulses by

a resistor-capacitor combination at the amplifier input. Be-

cause the amplifier input appeared as a virtual ground, the

input current through the 30 pF capacitor had an exponentially

decaying waveform with a 300 ns time constant, and the total

charge was determined by the pulser reference voltage and by

the coupling capacitor to the amplifier. This current pulse

simulated the NaI - photomultiplier system output signal.

For temperature tests, the amplifier-discriminator system

was placed in a temperature-controlled oven. The pulser, its

coupling network, the power supplies and the performance monitor-

ing equipment were outside the oven to avoid unnecessary mea-

surement errors.

For the amplifier gain tests the output pulse was observed

on a Tektronix 545B oscilloscope with a Type W plug-in unit.
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This plug-in unit allows accurate pulse amplitude measurements,

which are independent of oscilloscope gain. A stable, adjusta-

ble dc voltage is generated in the plug-in unit and subtracted

from the input signal. By adjusting this voltage such that

the pulse peak just reaches the baseline on the oscilloscope

viewing screen, the pulse amplitude becomes equal to the easily

measured dc voltage. The amplifier output pulses can also be

measured using a stable, precision pulse-height analyzer if

such an instrument is available.

The amplifier output dc level could be monitored by connec-

ting a digital voltmeter to the output. For this measurement

no input signals should be applied to the amplifier, and the

value of the -6-V supply should be monitored because it is

used as the reference for the amplifier. Similarly, the ampli-

fier noise level can be determined by connecting a wideband

rms voltmeter to the amplifier output. A suitable instrument

is the Hewlett-Packard Model 3400 A.

The discriminator thre'shold was monitored by connecting

the discriminator output pulse to a scaler connected as a fre-

quency meter. The mercury-relay pulser was synchronized to

the ac power line so that it ran at a stable rate of 120 pulses

per second. The pulser power supply was then adjusted so that

the frequency meter indicated 60 ±S Hz over several one-second

averaging intervals. The value of the. pulser power supply was

then taken as being proportional to the discriminator thresh-

old. This technique allows the center of the signal-plus-noise

Gaussian amplitude distribution to be placed accurately at the

discriminator threshold.
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4.2 Test Results

The results of several tests performed at room tempera-

ture _-20°C) are given in Table 4.2-1. From these data it

is apparent that the gain and discriminator threshold desired

have been achieved. Also, the dc output level equals the -6-V

reference within 4 mV, and the rms amplifier noise of 300 _V

is small compared to the analyzer channel width of 39 mV.

The effects of temperature variations are illustrated in

Figures 4.2-1, 4.2-2 and 4.2-3. For temperatures between -50°C

and +50°C, the amplifier baseline drifts by 0.5 mV and the gain

Changes by 0.4%. Over the same temperature range, the discrim-

inator threshold drifts by 0.75%, including amplifier drifts,

and by 0.32%, excluding amplifier drifts.

Because of the extensive theoretical analysis which pre-

ceded the construction of actual hardware, the behavior of the

circuits during test could be generally predicted in advance.

The agreement of the test data with the theoretical predictions

within the accuracies of measurement and calculation generates

confidence that the worst-case estimates for gain drift, lin-

earity, etc. are correct and actually do correspond to the

operation of actual hardware.
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Table 4.2-1

Results of Room Temperature Tests

Parameter

Conversion gain

Conversion capacitance

Deviation of output dc level
from the value of the -6-V

supply

Discriminator threshold refer-

red to the amplifier input

Discriminator threshold refer-

red to the amplifier output

RMS amplifier output noise

Value

0.0515 V/pC

19.4 pF

-3.7 mV

I. 98 pC

102 mV

300 pV

4.2-5



Appendix A

Linear Circuit
Design Principles

i -



Linear Circuit

Design Principles

By

J. H. Marshall

ATC Internal Report Number 1

March 15, 1966

Revised September 22, 1966

Analog Technology Corporation
3410 E. Foothill Boulevard

Pasadena, California 91107

Approved by:

__. Howard Marshall •

Vice President

Advanced Planning



3.0

4.0

S.O

Linear Circuit Design Principles

Contents

INTRODUCTION

BASIC FEEDBACK THEORY

2.1 The Difference Between an Amplifier
and an Oscillator

2.2 Conditions for Oscillation

2.3 Special Cases

2.3.1 Single Pole

2.3.2 Two Poles

2.3.3 Two Poles and One Zero

TRANSISTOR EQUIVALENT CIRCUITS

3.1 Grounded Base

3.2 Grounded Emitter

3.3 Grounded Collector

SINGLE TRANSISTOR AMPLIFIERS

4.1 The Grounded Emitter Amplifier

4.1.1 Input Admittance and Voltage Gain
Representation

4.2 The Emitter Follower

4.2.1 Bootstrapped Source Resistance

4.2.2 Parallel RC Load and Source

Impedances

4.2.3 Series RC Load Impedance

4.2.4 Input Admittance and Voltage Gain
Representation

4.3 The Grounded Base Amplifier

THE DOUBLE DIFFERENTIAL AMPLIFIER

5.I General Solution

5.2 Symmetrical, Single-Ended Double

Differential Amplifier

5.2.1 Input Admittance and Voltage Gain

Representation

Page No.

1.0-I

1.0-I

2.1-I

2.2-1

2.3-I

'2.3-1

2.3-3

2.3-4

3.0-i

3.0-1

3.2-i

3.3-1

3.3-1

3.3-1

4.1-7

4.2-1

4.2-4

4.2-5

4.2-8

4.2-11

4.3-I

5.0-I

5.0-i

S. 2-I

5.2-II



1.0 INTRODUCTION

J

If a high degree of gain stability is required in a

linear amplifier, feedback is generally employed. The analy-

sis of such a fedback amplifier can become complicated if a

thorough understanding of gain drifts, transient response and

oscillations is needed. Although many texts thoroughly

develop feedback theory, a concise exposition of its applica-

tion to practical design does not seem to be available.

Therefore, these notes have been compiled to provide a gen-

eral summary of the principals of linear circuit design and

a ready reference of solved problems.

Basic knowledge of linear differential equations and trans-

form methods of solution are assumed, together with the usual

techniques of circuit analysis. The reader not familiar with

these items is referred tO such texts as Thomason, Linear Feed-

back Analysis. The purpose of these notes is to generate simpli-

fied expressions useful in performing practical design, rather

than providing a rigorous mathematical treatise on a subject

already overworked. The details of the analysis are included

to aid in finding errors and aiso to make possible generaliza-

tion to cases where stated approximations are no longer valid.

2.0 BASIC FEEDBACK THEORY

The usual feedback system is illustrated in the sketch

below.

Vou t

1.0-I



For such a-system, the output is related to the input by:

V°ut 1 [ F ]Vs = AcL = -8 I-F

where F = feedback factor = A8

(2 .o-1)

Generally the feedback attenuation network (_) depends only

on passive elements with all active parameters lumped into the

amplifier (A). By differentiating the closed-loop gain (AcL)

with respect to A, one can find the dependence _ this gain on

active elements, that is:

Ac( (÷I
for F >> 1

(2.0-2)

From this, one sees that changes in open loop gain (dA/A) are

attenuated by the feedback factor. Because the open loop gain

typically drifts from age, temperature, or other causes by 100%,

the accuracy of the closed loop gain of an amplifier is of the

order of the reciprocal of the feedback factor. This result is

one of the primary motivations for the use of negative feedback.

Not all feedback is negative. Positive feedback is use-

ful for regenerative circuits such as discriminators or flip-

flops. Also, using positive feedback are oscillators (sine-wave

or otherwise) and various waveform generators. Most such cir-

cuits are characterized by the fact that any input signal from

noise or otherwise produces a divergent response limited by

amplifier non-linearities.

2.0-I



2.1 The Difference Between an Amplifier and an Oscillator

A vexing problem in feedback circuit design is the pro-

duction of an oscillator when an amplifier is desired or vice-

versa. The difference between these two types of circuits

depends on the closed-loop transfer function. Using Laplace

transforms with "p" as the transform variable, the time depen-

dence of the output voltage to an input stimulus can be expres-

sed as

Vou t(p) = AcL (p) V s (p) (2.1-1)

r"--- _ V(t) e -pt

Jo
where V(p) dt

For circuits containing only resistors, capacitors and induc-

tors or active elements which can be equivalently expressed in

terms of the above, the closed loop transfer function becomes

the ratio of two polynomials of finite order with real coeffi-

cients, that is:

N

_.ai pi

i=O N(p) (2 112)
AcL (P) = M = D(p) "

_. bjp j

j=0

Such a polynomial will have as many roots (ak, 8k)as its order,

where the roots are defined by

N i

i_0 ai a k

M

3=0

= 0 (2.1-3a)

= 0 (2.1-3b)
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Because AcL (_k) = 0, the _k are called the "zeros" of the

closed loop transfer function; similarly because AcL (Bk) = ®,

the Bk are the poles.

The poies and zeros can be either positive, negative,

or complex conjugates• Considering a delta-function source

function so that Vs(P) = I, then the transform of the output
voltage equals the closed-loop transfer function. The place-

ment of the poles of this transfer function then determines

the basic type of response of the circuit•

The denominator of the transfer function can be written

as follows:

M

D(p) = -_ Ck (p-Bk) (2.1-4)
k=0

explicitly denoting the fact that D{Bk) = 0.
form then assumes the form:

The inverse trans-

M

Vou t(t) = I dk exp (Bkt) (2.1-5)
k=0

where the dk can be polynomials in t if equal poles are present.
From this expression, five types of response are possible:

•

2.

•

4.

5.

Decaying exponential - Bk negative

Decaying sinusoid Bk complex with negative
real part

Divergent exponential Bk positive

Divergent sinusoid - Bk complex with positive real part

Steady sinusoid Bk pure imaginary
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Oscillators and regenerative circuits make use of cases 3 to

5 where the poles lie in the right half of the p-plane_includ-

ing the imaginary axis. Cases 1 and 2 correspond to stable

amplifiers with the poles lying in the left half plane. (Case

2 with large complex parts of 8k is usually not very desirable.)

2.2 Conditions for Oscillation

Although the conditions on the closed-loop transfer func-

tion separating amplifiers and oscillators appear straight-

forward, the practical problems of analyzing this function

directly may be insuperable. Because the feedback factor (F)

may be far easier to calculate, many attempts have been made to

determine circuit response by examining the characteristics of F.

If the restriction to cases of resistors, capacitors and

inductors or to active elements representable by the above is

continued, then the feedback factor is also the quotient of two

polynomials of finite order and real coefficients. The place-

ment of the poles and zeros of this function can now be used to

deduce the stability of the closed'-loop system.

A divergent response or steady oscillation occurs only if

the closed-loop transfer function (AcL) has poles in the right

half of the p-plane, including the imaginary axis. If the open

loop gain (A) and the feedback network (8) result from stable

systems, then they can have no poles in the right half plane.

From equation 2.0-1, one then deduces that the only term possibly
1

contributing to poles of AcL in the right half plane is I-F"

Thus, the only poles of AcL in the right half plane result from

zeros of I-F, which can have no poles in the right _If plane

because F has no poles there.

2.2-i



The feedback factor F as a function of the complex variable

p can be viewed as a mapping of contours in the complex p-plane

into contours in the complex F-plane. If F results from practi-

cal circuits employing at least one active element, it will tend

to vanish at very large frequencies, so that

F ÷ 0

as IPl
(2.2-i)

A fundamental theorem of complex variable theory (I) holds

that the mapping of a closed contour in the p-plane encircles

the origin in the F-plane for every zero enclosed, if no poles

are also enclosed. To investigate the stability of AcL, the

contour must contain the entire right half of the p-plane.

Such a contour is the imaginary axis and a semi-circle with a

radius approaching infinity. By translating the origin to

(i,0), the statement can be made that F will encircle the point

(I,0) for every zero of I-F in the right half plane. Because

F vanishes on the semi-circle, only values along the imaginary

axis need be considered. Therefore, one is led to the Nyquist

criterion for stability which states that an amplifier will be

stable if F (j_) does not encircle the point (i,0) for all

frequencies between -_ and +=. The negative frequencies can be

eliminated by the observation that

F(-jto) = F* (jto) (2.2-2)

because F contains polynomials with real coefficients.

A sufficient (but not necessary) condition that the_Nyquist

criterion be satisfied is that the amplitude of F always be less

than one when the phase shift reaches 180 ° . Such a requirement

(1) Thomason, Linear Feedback Analysis, pp 133-142

2.2-2



excludes the positive real axis beyond (i,0), making encircl-
ing (i,0) impossible.

Because F can be written as the quotient of two finite
order polynomials, then

M

: _Fo j:0F(j_) N (2.2.3)

i=O

where F o = -F(0)

and T° = -1

J vj Yj= zero of F[i.e. F(yj) = O]

5.
1

_i -- pole of F[i.e. F(6i) = O]

From complex variable theory, FCj_) may also be written as

where B and + are real numbers given by

(2.2-4)

B(m) = F
0 o2

=_ i + (+_j)

JNo •

I + (,,,_)2

M N

E °--I= Arctan _3

j:o i:o

2.2-3

Arctan _TP
1

(2.2-5a)

(2.2-5b)
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The stability requirement can then be expressed as

B(m o) < 1 (2.2-6)

where

¢(_o ) = -_

Steady oscillation will occur if the phase shift reaches

180 ° at a frequency for which the amplitude is one. In this case

some poles of AcL lie on the imaginary axis. For larger values

of A, complex poles with positive, real parts exist and give

rise to divergent responses.

An asymptotic expansion of terms similar to those appear-

ing in equation 2.2-5 can be performed as follows:

+ (_T) 2

Arctan w_ m 0

for 1 > _ (2.2-7a)

Then

Arctan _T m _/2

for 1 < _T (2.2-7b)

O

TF(_j)
For

F o _T_>I

--

-k_

2
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where k = the number of poles with _rP > 1 minus the

number of zeros with mr ° > i.

In this approximation, a "frequency of gain cross-over" (mc)

for which B = 1 can be calculated according to

C

I IT o

o J

m Tj>l
Fo c

mr
m TP>I i
c i

I/k

{2.2-9)

A corresponding time, tc, is given by

1
tc = (_2 2- i0)(_

C

The amplifier will only be stable if k _ 2 for m _ m The
C"

case for k = 2 can be ambiguous because of additional phase

shift neglected in this approximation coming from higher fre-

quency poles.

The convenience of the asymptotic approximationbecomes

clearer if one considers the behavior of the logarithm of B(_)

as a function of the logarithm of the frequency. If such a

log-log plot is made, then only straight lines with slopes pro-

portional to k are involved. As the frequency increases past

a pole, the slope steepens, while a zero causes the curve to

flatten. By using log-log paper for such plots, the _ded com-

plexity of calculating logarithms is avoided. Usually it is

also pointless to multiply the logarithm of B by 20 to obtain

db or to divide _ by 2_ to use frequency in Hertz. Because

T is often directly calculated, the abscissca can sometimes

2.2-5
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be conveniently plotted in units of time given by the recipro-

cal of _.

A typical case with two poles and one zero is given in Fig-

ure 2,2-1. From this type of graph, the influence of the "break

points" at the poles and zeros is clearly illustrated.

2.3 Special Cases

The following special cases often result in practice

either exactly or approximately.

2.3.1 Single Pole

Sometimes, at least for frequencies below gain cross-

over, the feedback factor contains a single pole. Because this

case never oscillates, the use of such a dominant time constant

is a simple method of achieving amplifier stability. The feed-

back factor can then be written as

-F

P = o (z.3.1-1)

(I + pz)

and the closed loop gain becomes

AcL ÷
B B 1 PF-_

(2.3.1-2)

For F ° >> 1, AcL becomes approximately

where t
C

-I

AcL ---_. __
B

1

l+pt c

T
= gain cross-over time =

o

2.3-1
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F(p) = Fo(1% p_)

(1 + p_)(1 + pTP2)

B i0 s'

4
10

10 3

10 2

1 ;
10

lO p

k=o

m

I

t ÷

T_ F° = 105

-to = lO-4s

+1 Tp : 10-1S

Xk=+2k=+2

• _" "["i0_ kk:+l

10 1 10 2 10 3 . 1tO'4 101_

10-_ z 10 -2 10 -3 10-4 lO-S

Figure 2.2-1 - Typical Asymptotic Response Plot
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Thus) the rise-time of the closed-loop response is decreased

from that of the open-loop response by the feedback factor -

at least if the amplifier internally has sufficient current and

voltage dynamic range to remain linear.

2.3.2 Two Poles

If the feedback factor possesses only two poles,

oscillation still does not occur. In this case

-F o
F = (2.3.2-1)

(l+pz A) (l+P_ B)

and for F >> i
0

-I
AcL -z T

1 + p IZA+ZB) TAZ
+ p2 B

F o F o

(2.3.2-2)

If this response is to be critically damped, then the roots

must be real, implying

z_ + t_ = 4 Fo TAT B (2.3.2-3)

Solving this equation for the case where "rA < "tB, one obtains

t

/4Fo c (2 3 2-4)ZA _ ZB = T " "

_B

where tc = gain cross-over time = _oo-
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The closed loop response becomes

-I
AcL =-- -_-

it c 12l+p -2-/

(2.3.2-s)

For this case, the loop is still basically stabilized by a

single dominant pole, because the no-ringing condition allows

a second pole only to appear at frequencies above gain cross-

over. However a slight improvement in rise time is achieved

because two equal poles in the closed loop response at tc/2

replace a single pole at tc. (Note: In general, the 10%-90%

rise time for a multiple-pole system is given approximately

by

/iT R = 2.2 _ x_ (2.3.2-6)

i=l

where the _i are the N poles of the closed-loop transfer func-

tion.)

2.3.3 Two Poles and One Zero

Often bandwidth considerations do not permit one

of two poles to be much larger than the other. A ringing response

can still be avoided if a zero is placed near gain cross-over,

For this case the feedback factor becomes

-F o (l+p_)
F = o (2.3.3-I)

(l+p_ A) (I+pT B)
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and the closed loop gain can be written for F >> I:
0

AcL =

-__i { l+Pto
8 [_ ':A+_B ]l+p + o + F°

+ p2__
TAT B

F o

(2.3.3-2)

The condition for critical damping is then

ZA+ZB 4ZAZ B
+ =

o F ° F °
(2.3.3-3)

For Fo >> _ I0 and the two poles not differing from each

other by more than an order of magnitude, this condition be-

comes approximately

_ 4tcZo 2 -
o

_A_B
where t c = gain cross-over time - F •

0 O

(2.3.3-4)

The closed loop response is then

-I { l+p4tc
AcL = -_- (l+p2tc) 2

If ZA = ZB = 3, then

= 2t c

2.3-5
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compared to the single pole case where

= t c F ° (2 3 3-7)

Thus, for the same cross-over time, the value of the sta-

bilizing poles for the two pole system is considerably less

than that for the single pole system if the feedback factor is

large. Because standing current is often required to charge

roll-off capacitors without rate limiting, the two pole -

one zero system may achieve more bandwidth at less power than

the use of a single, dominant pole.

A convenient method for generating the zero is to

place a pole in the 8-network. In this case:

S = 8 ° (1 + p_o ) (2.3.3-8)

and AcL becomes

AcL
18o (+p2tc) 2

(2.3,3-9)

The inverse transform for a step function input is

then the critically damped waveform

where

V°ut ( -) exp [ ) (2 3.3-10)-_s - 1 - 1 + t t, _ -'_" •

=. 2t c
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If the B-network has no complex components, the

•inverse transform becomes

V () ()out = 1 - 1 t exp t
v s V -T

(2.3.3-11)

which has a maximum overshoot at t = 2_ = 4t of 13.6%.
C
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3.0 TRANSISTOR EQUIVALENT CIRCUITS

A transistor is a three terminal device. For analysis

purposes, one of these terminals may be considered the refer-

ence or groundterminal, leaving four complex parameters to

describe the behavior at the other two terminals. If the

base is chosen as the ground terminal, one obtains the grounded-

base equivalent circuit. This configuration is most amenable

to analysis by basic transistor theory and forms the starting

point for our calculations.

3.1 Grounded Base

A simplified grounded base equivalent circuit is shown

below.

V Emitter Collector

V
_V

C

kT r er' = _ r -- __ = . kT

e ql e e cx ql- c

1
X = -- C r v

2_f e e

Cob = collector output capacity

The base spreading resistance referred to the emitter has been

neglected as being small compared to re . This approximation is

usually valid for collector or emitter currents (Ic,le) less

than 1 mA. The reverse voltage feedback from the collector to

3.0-1



the emitter has also been neglected because of the small
coefficient (typically 10-4). All the frequency dependences

of the emitterzbase junction have been lumped into a single

time-constant (_), with such effects as diffusion time delay

neglected. This transit time is usually of the _der of 20%

of

3.2 Grounded Emitter

The grounded base equivalent circuit can be exactly mani-

pulated to the grounded emitter configuration shown below.

C
C

Vb0 Base _,__--_ Collector V c

_ 1 e a _ Br e Cob-C c _ _Vb

V b

e re

B --

Cc = collector-to-base capacity

The same approximations made in the grounded base configura-

tion are still required here. Notice that the collector-to-

base capacity is not exactly equal to Cob , because Cob includes

stray capacity to the header and to the emitter, which is usually

of the order of 1 pF.
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3.3 Grounded Collector

The grounded emitter equivalent circuit can be exactly

manipulated to the grounded collector configuration shown

below.

C
e

V b F-__ V e

Br
e Vb

r
c

Base Emitter

I -_ Cc _Cob_C c Ir e

/

4.0 SINGLE TRANSISTOR _IPLIFIERS

Three simple amplifier circuits are analyzed in the follow-

ing three sections. These circuits generally form the "build-

ing blocks" of more complicated systems.

4.1 The Grounded Emitter Amplifier

One of the simplest amplifier circuits is the single ground-

ed emitter stage. In general such a stage can be represented

i

i

as

where
YS =

YF =

YL =

source admittance

feedback admittance

load admittance
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Using the equivalent circuit for the transistor given on

page 3.0-1, the circuit becomes

i
S

V1 ] V2

YF

J

, 1

where YS = YS + Br e + PCe

!

YF = YF + 1 + PCc
C

!

YL -- YL + P(Cob - Cc)

Setting up the node equations for the above, one obtains

V1 ge - YF + V2 YL + YF

The determinant then becomes

I ! !

YS + YF -YF

! ! !

ge - YF YL + YF

! ! ! ! ! ! !

YS YL + YS YF + YF YL + YF ge

(4.1-2)

4.1-1 %_



and the output voltage (V2) is related to the input current

(i s) by

V2 - (ge YF )
"_ - , , , , , , , (4.1- 3)

YS YL + YS YF + YF YL + YF ge
S

A typical condition for source and load admittances is

shown below

isq) Rs --CS

1

If one defines the following auantities by

[2> v 2

C 1 = Cs + Ce

ge

gl = GS + -8-

C 2 = Cob - C c + CL

1
G S =

R S

I
gc = r

C

1
G L =

L 4.1-2

(4.1-4)



then

!

YS = gl + PC1

!

YF = gc + PCc

!

YL = GL + PC2

(4.1-s)

SubstitutSng these values into eq. 4.1-3, the transfer function

becomes

[ ][ / 1V2 ge - gc 1 - PCcr e I 1 - re/rri
: - , (4.1-6)

s [glgc + glGL + gcGL + gcge] [1 + pA + p2B]

where

A
(gl + ge + GL) Cc + (gc + GL) Ci + (gl + gc ) C

glgc + glGL + gcGL + gcge

S

ClC c + CIC 2 + CcC £

glgc + glGL + gcGL + gcge

A useful set of approximations are the following

B >> I

RS >> r e

r c >> Rs II

(G S << ge )

Bre (gc << gl )

(4.1-7)

For this case

glgc + glGL + gcGL + gcge
-_ glGL [i + gcge]glGL

(4.1-8)
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The transfer impedance then becomes

V 2
..;-.- _

I s II
MiRL I I - PCcr e

RLM i
i+- 1 + pA + p2B

r C

where M i = current gain into a zero-impedance load

"(4.1-9)

ge Rs
M i = -- = B

gi Rs + Bre

The output impedance is reduced, compared to the grounded-

base stage, by the current gain. This effect can be made

explicit by writing equation 4.1-9 as

v {-- = M. RTIn
i S I .i

i PCcr e

1 + pA + p2B

Thus, the output resistance [Rout) given by

(4.1-10)

r
c

Rou t = _ (4.1- 11)
i

is reduced from the collector-base resistance (rc) by the cur-

rent gain (Mi). The reduction (k) in effective current gain

caused by the non-zero output resistance then becomes

k = 1 = 1 (4.1-12)
RL gcge

I + 1 +

Rout gI-GL
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and the transfer impedance becomes

V 2 _ 1 - pC c r

- kMiRL I e

_s 1 + pA + pZB

The coefficients A and B are then given by

(4.1-13)

where

A

S 9_

kIcMcciicLI
I + ClC2 + CcC 1

k_IvRlre ' CICc 2

(4.1-14)

1
: -- = zero-load input resistance

R1 gl

RS 8 r e

R 1 =
RS + 8r e

RL

M v zero-source resistanc'e voltage gain = r
e

Although the roots of the denominator of equation 4.1-13

can be determined exactly using the quadratic formula, two

cases where approximate factoring can be applied are particu-

larly interesting. In the first case, the load time constant

(C2R L) is assumed dominant so that

C2R L >> (MvC c + CI) R 1 (4.1-15)

4.1-5



Then,, the two time constants (:i,_2) implied by equation 4.1-13

become

T 1 -- k C2R L = C 2 (R L [] Rou t ) (4.1-16)

I ClCc ]T2 : R 1 C I + Cc + C2

For the usual case where C << C then
c 2'

T2--R 1 [Cl + Cc] (4.1-17)

Thus, the input and output time constants are effectively

separated as one would expect ignoring the Miller Effect.

In the second case the Miller Effect is assumed to be

dominant so that

C2R L << (MvC c + C I) R 1 (4.1-18)

and

T1 _ kR 1 (MvC c + C I)

"_2 _" re

Cc(C 1 + C 2) + C1C

Cc +"C1/M v
(4.1-19)

4.1-6



If also Cc >> C1/Mv, then

T 2 _ r e (C 1 + C 2) (4.1-20)

4

4.1.1 Input Admittance and Voltage Gain Representation

Often in the calculation of the transfer function

for cascaded stages it is convenient to represent each stage

by a voltage gain and by an input admittance. The parameters

for such a representation can be simply obtained from equa-

tion 4.1-1.

The voltage gain is defined as the gain of the

device when it is driven from a zero-impedance source. Thus

V2Y S
Mv = lim (4.1.1-1)

Y _ _ i2
s

From equation 4.1-3

M
v

-(ge - YF ')

YL' + YF'

(4.1.I-2)

For the configuration shown on page 4.1-2_

I

M v

1 - p

C
c

ge - gc

C c + C 2
I +p

GL + gc

4.1-7

(4.1.1-3)



For r c >> RL)

,i :-pCcre]r e 1 + p(C c + C2) RL
(4.1.1-4)

The input admittance is given by

[!'! )

is - YS + YF L + ge

YIN = VI LYL: + YF'J

(4.1.1-5)

!

The term YS is the admittance directly connected to the input.

The term proportional to YF' results from the Miller effect and

can be written as

!

= ' --i = YF (-My + 1) (4.1.1-6)
YL + YF

For the configuration shown on page 4.1-2,

YM = gc + pC +

- C -_
2

I+P G +
L ge

Cc + C 2
I + +

PGL gc
-- g

(4.1.1-7)

4.1-8



For r
c >> R L and RL >> re,

(I + PrcCc)

r
c + p(C 2 L_ "

R
+ C c)

(4.1.1-8)

and

1[ZM = YM _ 1 + PrcC

+ p(C 2 + Cc)

+ PC2r e

4.1-9



j'

4.2 The Emitter Follower

The emitter follower (grounded collector amplifier) is

commonly used when signal inversion is not desired. Such a

circuit can be represented by

f'
f

f"

V 2

where
YS = source admittance

YL = load admittance

4.2-I



Using the equivalent circuit for the transistor given in

Section 3.3, the above circuit becomes

V1 _ V2 I
<_Tvlgo

_e_

where

!

YS = YS + ___I+ pC c =
rc YS + gc + PCc

1 ge
= --+ = --+pC

Ye 8r e PCe _ e

!

YL = YL + P(Cob Cc) = YL + P(Cob - Co)

1
ge = F-

e

Setting up the node equations for the above, one obtains

[ ] [ ' ]0 = V 1 -Ye - ge + V2 Ye + YL + ge

4.2-2

q_



The determinant then becomes

A =

YS + Ye -Ye

!
÷ +

-Ye -ge Ye YL ge

(4.2-2)

-t t t t I

YS Ye + YS YL + YS ge + Ye YL

and the output voltage (V2) is related to the input current

(is) by

V2 Ye + ge

I
S

t ! ! l !

YS Ye + YS YL + YS ge + Ye YL

(4.2-3)

4.2-3



4.2.1 Bootstrapped Source Resistance "

Often part of the source resistance is bootstrapped

in order to obtain improved linearity, higher gain, and larger

dynamic range. Such a circuit is

V 1

R _.

>V 2

RA RB C

For the case where RA + RB is large compared to times of inter-

est, C can be approximated by a short circuit, and the follow-

ing equivalent circuit applies.

V 1

f

RA

ge

I

V 2

>RB

J f

J

4.2-4



Equations (4.2-2) and (4.2-3) can be formally modified to

include bootstrapping by replacing B with 8' and Y_ with
)!

YL '

where

, RA
8 = 8 (4.2.1-1)

8r e + RA

,, , 1

YL = YL + R"'B

4.2.2 Parallel RC Load and Source Impedances

A typical condition for source and load admittances

is shown below.

L'sS
J

V 1

CS

if one defines the following quantities by

V 2

)

i

C 1 : CS + Cc (4..2.2-1)

C2 = CL + Cob - Cc

G1 = GS + gc

1
GL = R

L

1
GS =

RS 4.2-5



then

!

YS = G1 + PC1 (4.2.2-2)

YL' GL + pC2

If the emitter follower is bootstrapped, the simple

substitution discussed in Section 4.2.1 applies here also.

Substituting the above values into equation (4.2-3),

one obtains for the transfer impedance, under the approximation

that 8 >> I,

__v2,{i s = RS RL

where

1 + p_ a }I + pA+ p2B

(4.2.2-3)

Rout -- output resistance

re + 8

Rs IIrc

t = r C
e e

A

I !

RL + RS

Ta RL + re + RS'

8

B = k :Ta _I + TiC2re +

+ :I

RL + r e

R L + re + RS'

8

k = output resistance gain correction

__} + kC2Rou t

1

i + Rou t

RL

4.2-6



RS' : RS II rc :

C
1

6
1

RS rc

RS + r c

A common application of an emitter follower is as

a unity gain voltage amplifier. For this case one wants

k _ 1

!

RS --- RS

(4.2.2-4)

so that

Rou t << R L (4.2.2-5)

which implies

r e << RL (4.2.2-6)

RS'/6 << RL

Rs << rc .

For this case

A _ T

B -_

RL + RSi .

a RL f

+ T I

T tI I + +

4.2-7

+ C 2 Rou t (4.2.2-7)

>- i

!



For the case where the source time constant -is dominant so

that

RL + RS

_i >> C2Rout + _a R L (4.2.2 8)

Then the two roots of the denominator become approximately

r

if also

:A _ _I (4.2.2-9)

:B = _ + -- +
Ce

_A >>_B"

4.2.3 Series RC Load Impedance

In the case where a series RC component is present

in load impedance, the circuit becomes for a capacitive source,

such as when the emitter follower is bootstrapped

r

V 1

V2_L%

RLI cL1eL2
i
S

4.2-8

i/



Then

I

YS = PC1 (4.2.3-1)

YL
GLIGL2 + P(CLIGL2 + CL2GLI + CL2GL2)+p2CLICL2

GL2 + PCL2

where

1
GLI =

RLI

I

GL2 = RL---_

Then, substituting into equation (4.2-3), one obtains

V 2 RL1 (1 + pTa)(1 + PXL2 )
-- = 8

i s 1 + pA + p2B + p3C

(4.2.3-2)

where

+ + _ + 8CIRLI + CL2RLIA = 8(Ce + CI) re TLI L2

S
8re(C e + C I)(TLI + TL2 + CL2RLI) +

8C1RLI(_ a + _L2 ) + TL1 TL2

= 8re _L2 RLI Cl (Ce + CLI)

= RLI CLI

= RL2 CL2 4.2-9



For the case where

RL1 >> r e (4.2.3-3)

8 C 1 RL1 >> + T6 _a LI

tL2 > _LI

then

A _ BC 1 RLI + TL2 + CL2 RLI (4.2.3-4)

B m 6CI RLI (_L2 + CL2 re)

C -- 8C 1 RLI re TL2 (C e + CLI)

If the roots of the denominator of equation 4.2.3-2 are

ordered such that

_A >> TB >> _C (4.2.3-5)

then

TA _ 8C 1 RLI + CL2 RLI (4.2.3-6)

CL2 (RL2 + r e)

CL2
I +

6C I

r e (C e + CLI)

4.2-I0



4.2.4 Input Admittance and Voltage Gain Representation

Often it is convenient to treat the emitter fol-

lower as an impedance transfer device. In this notation the

input admittance and the voltage gain become important.

The input admittance can be found by solving equa-

tion 4.2-1 for V I. Thus

is , Ye YL'

= +' YL' + ge (4.2.4-1)YIN V 1 - YS + Ye

The terms in YS and Yc result from the admittances directly
f

connected to the base. The remaining term is dependent on

, transistor parameters and On the load admittance, and repre-

sents the impedance transfer characteristic of the transistor.

The input admittance can be written as

YIN = YS' + YQ (4.2.4-2)

where
!

YS = YS + Yc = YS + gc + PCc

Ye YL '

YQ = !

Ye + YL + ge

The quantity YQ then becomes the term of further interest.

where

Inverting and simplifying gives

ZQ = 1 _ l+ ZL, +
YT Ye

, 1
ZL =

YL'

4.2-11

(4.2.4-3)



Substituting for Y
e

unity, one obtains

and assuming that B is large compared to

ZQ = B

!

r e + ZL (I + p_a)

1 + pBT

(4.2.4-4)

For the series RC load impedance discussed in

Section 4.2.3,

!

ZL = RLI

1 + PtL2

I+ p [TLI + _L2 (I + RLI)] + p2 _LlZ
RL2 L2

(4.2.4-5)

where Cob - Cc has been included in CLI.

value, one obtains

ZQ

where

fi ro: r"+
=i 11 + pBz~ | 1 + pH

H _.

R,_
_LI + TL2 (I + L±)

RL2

Substituting this

(4.2.4-6)

E

iLl'L2

Rp ICLI

+ C e + CL2 II + RL2
r e

CL2RL2R p (Ce + CLI)

r e RLI

+
r e RLI

4.2-12



For H 2 >> D, the denominator can be approximately

factored such that

where

RIN

1 + PCin Rin

I + pE + p2F

(i + pST )(I + pD/H) i

(4.2.4-7)

RIN = 6(r e + RLI)

C i[RLII[cLIcL2(iIN _ RL 1 + re

Thus, to a first order approximation, the input resistance is

increased over the load resistance by a factor of 6, while the

input capacitance is decreased by nearly the same factor.

For RLI >> RL2 and RLI >> re,

CLI + CL2
C m

IN (4.2.4-8)

D/H - =__

6

CLI CL2 RL2
(4.2.4-9)

CLI + CL2

E -z re 1 + Ce L2 • •

F _ r (C e + ) (4 2 4-11)e CL2 RL2 CLI • •

4.2-13



t_

The voltage gain can be found from equation 4.2-1

by solving for the limit

lim V2Ys Ye + ge
M = =
V Y ÷

S is Ye + ge + YL'

(4.2.4-12)

For 6 >> 1

M
V

1 + pT

r
e÷

I + p_ _LL'

(4.2.4-13)

For ZL'

M V

where

given by equation 4.2.4-5,

I RL 1

RLI + r

(I + p_ )(i + PTL2)

1 + pM + p2N

(4.2.4-14)

M = _L2 + (CLI + CL2 + Ce) Rp

N : _L2 (Ce + CLI) R
P

r e RLI

Rp =
re+RL1

4.2-14



4.3 The Grounded Base Amplifier

When a low input impedance and a high output impedance

are required) a common configuration is the one shown below.

V 1

E]
f

]

where

Y
S

= source admittance

YL = load admittance

Using the equivalent circuit of Section 3.1, the above circuit

becomes

!
Y

S
where

S

V 1

Ys + ge

/

!

+ pC e

,_ V 2

/
t

Vlg e

!

YL = YL + gc + PCe

ge = I/re

ge ge/a 4.3-1



The transfer impedance is easily found to be

V2 ge

i s Y ' ,s YL

(4.3-1)

For the typical combination of load and source impedances

shown below

V 1

CL

the quantities of equation (4.3-1) become

!
= ÷

Ys Gs + ge + P(Cs Ce)

YL' = GL + gc + P(CL + Cc)

1
Gs = R--

S

1

GL =

4.3-2

(4.3-2)



Equation C4.3-I) can then be written

V2 - ge

is I {Cs{G s + ge_(G L + gc } 1 + p Gs

(4.3-3)

"CECIL1 +p
+ ge'

(CL + CO) -I

GL +-_cc ]
With the approximation that

RL << r c (4.3-4)

!

r << R
e s

Then

V 2

i
S

ctRL

[ c°][1 + p_ (I + _ss) 1 + p (C L + Cc) RL]

(4.3-5)

4.3-3



5.0 THE DOUBLE DIFFERENTIAL AMPLIFIER

A common configuration often used where dc stability is

a requirement is the double-differential amplifier shown in

Figure 5.0-1. The advantage of this configuration lies in

the fact that the second stage can be used to balance the opera-

ting conditions of the first stage via an external feedback

loop. High common mode rejection and dc stability determined

only by the quality of the input transistor then result.

In this section we wish to calculate the transfer function

of this amplifier in the differential mode. Common mode effects

caused by Rel and Re2 will be neglected in this analysis. The

equivalent circuit of Figure 5.0-2 then results from the tran-

sistor circuit given in section 3.2.

The analysis of this configuration in general is extremely

tedious, and useful results can only be obtained by machine

computation. However, in this report we will set up the equa-

tions in matrix form so that such computation could be per-

formed if needed.

In usual practice this problem can be simplified because

the amplifier is driven from a single-ended source, and one of

the output collectors is grounded. If one also assumes a cer-

tain degree of symmetry, the calculations can be performed by

hand. These results are given in Section 5.2.

5.1 General Solution

In linear circuit analysis, a complex set of equations can

be written in the matrix form

I = YV (5.1-1)

5.0-1

{7



>.

_f

X

>

>

X

>

5.1-1

,q
"',0

- Q---k

%D

U.

J

I

0

C_

---4
I

5
,,9

U_



I

I

q
I

S.I-2

i !

o-7

l--

.,J

o-
Lu
• o

I

C)

L_



where for this case

I : (i I, i2, O, O, O, O, O, O)

.V =

V 2

V 3

V 4

V 5

Y = 8'x 8 matrix of admittances

5.1-3



From the equivalent circuit of Figure 5.0-2, Y becomes

YI+Ycl

+Yel.

/ o
-Ycl

+gel

, 0

0

Y2+Yc2

+Y
e2

0

-Yc2

+ge2

0

•-Ycl 0 0 0

0 -Y 0 0> C2

Y3+Ycl 0 -Yc3 0

+Yc3+Ye3

', 0 Y4+Yc2 0

+Yc4+Ye4

-Yc3 0 ys+Yc3

+ge3

0 -Yc4

+ge4

-Yel -Ye2 0 0

-gel -ge2 '

-y
e4

-ge4

5.1-4

-Ye3

-ge3

-Yc4

0

Y6+Yc4

0

0

-Yel

• -Ye2

-gel

-ge2

gel+ge2

+Yel+Ye2

(S.I-2)

o_

-Ye3

-y
e4

-ge3

-ge4

i

¢

/
ge3+ge4 -

+Ye3+Ye4/

/

!,

!'



In the usual manner, equation 5.1-I can be solved for a given

output voltage (Vi) according to

V i

IYil

IY I
(5.1-3)

where

IY I = determinant of Y

IYi ] determinant of Y with the ith column replaced

by IT. (I T = transpose of I = I written as a

column vector.)

5.1-5



The determinants can be simplified by elementary opera-

tions and then expanded in cofactors. If rows one and two

are added to row seven, then

IYl

YI+Ycl 0 "Ycl

+Yel

0 0 0

0 Y2+Yc2 0 -Yc2 0 0

+Ye2

-Ycl 0 Ys÷Ycl 0 -Yc3 0

+gel +_Ye3

-Yc2 Y4+Yc2

+ge2 +Yc4+Ye4

0 0 0

0 0 -Yc3 0 YS

+ge3 +Yc3

0 0 0 -Yc4 0

+ge4

YI+Ycl 0

Y2+Yc2 0

-Ycl -Ye3

-Yc4 -Yc2 -Ye4

0

Y6

+Yc4

0 -ge3

0 -ge4

"Yel -Ye2 0 0 0 0 0 0

-gel -ge2

0 0 "Ye3 -Ye4 0

"ge3 -ge4

0 ge3+ge4

+Ye3+Ye4

S.1-6 (5.1-4)



Expanding this determinant in cofactors, one obtains

IY] =-{Yel + gel I ]All + IYe2 + ge2 1 ]A 2]

where A 1 and A 2 are 7 x 7 matrices.

cofactors:

IYl
Yel + gel I

(5.1-5)

Expanding A 1 and A 2 in

Ycl IBlll + (Y1 + Ycl ) IB121}

'{Y°2 1+ + ge2 Yc2 IB211 + (Y2 + Yc2 ) IB2211 (5.1-6)

where the B - matrices are given by

Y2+Yc2 .... Yc2 0 0 Y2+Yc2

+Ye2

0 0 -Yc3 0 -Ycl

-Yc2 Y4+Yc2 0 -Yc4 -Yc2

+ge2 +Yc4+Ye4

0 0 Y5 0

+Yc3
e

0 -Yc4 0

+ge4

0 -Ye4 0

-ge4

Y6

+Yc4

0

0

-Ye3

-Ye4

-ge3

-ge4

ge3+ge4

+Yes+Ye4

(5.1-7)

5.I-7



IBi21

Y2+Yc2

÷Ye2

0

-Yc2

+ge2

0

0

0

0

Y3+Ycl

Yc3+Ye3

0

=Yc3

+ge3

0

-Ye3

-ge3

-Yc2

Y4+Yc2

Yc4+Ye4

0

-Yc4

+ge4

-Ye4

-ge4

=Yc3

YS

+Y
c3

0

0

-Yc4

0

Y6

+Yc4

0

-Ye3

-Ye4

-ge3

-ge4

ge3+ge4

Ye3+Ye4

(5.I-8)

5.1-8
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YI+Ycl

+Yel

-Ycl

+gel

0

0

0

0

0

-Ycl

Y3+Ycl

Yc3+Ye3

-Yc3

+ge3

-Ye3

-ge3

0

-Yc3

0

Y
S

+Yc 3

0

0

0

-Yc4

Y6

Y6 -¸

+Yc4

YI+Ycl

-Ycl

-Yc2

-Ye3

-Ye4

-ge3

-ge4

-ge4

ge3+ge4

Ye3+Ye4

(5.I-9)

S.I-9



B22[

YI+Ycl
+Y

el

-Ycl

-Ycl Y3+Ycl

+gel Yc3+Ye3

0 0 0 0

0 -Yc3 0 -Ye3

0 0 Y4+Yc2 0 -Yc4 -Ye4
Yc4+Ye4

0 0 0-y
c3

+ge3

YS -ge3

+Yc3

0 0 -Yc4 0 Y6 -ge4

+ge4 +Yc4

0 -Ye3 -Ye4 0 0 ge3+ge4

-ge3 -ge4 Ye3+Ye4

(5.1-10)

Further reduction of these matrices becomes overly tedious

and will not be presented here for the general case.

S.l-lO



In the foregoing analysis, the admittances were defined

by Figures 5.0-1 and 5.0-2. They are related to the quantities

used in Section 3.2 by
t

ge

Ye = -g- + PCe (5.1-11a)

Yc = gc + PCc (5.1-11b)

1
ge = _ (5.1-11c)

e

1
gc : _ (5.1-11d)

C

Also, the collector output capacitance, Cob - Cc, was assumed

to result principally from stray capacity to a grounded header.

This capacitance was lumped into the appropriate load admittance,

so that

Y3 = YL3 + P(Cobl - Ccl) (5.1-12a)

Y4 : YL4 + P(Cob2 - Cc2) (5.i-12b)

Y5 : YL5 .+ P(Cob3 - Cc3) (5.1-12c)

Y6 = YL6 + P(Cob4 - Cc4) (5.1-12d)

5.1-Ii



5.2 Symmetrical_ Single-Ended Double-Differential Amplifier

Often the double-differential amplifier is used in an

inverting feedback configuration, resulting in the base of

Q1 and the collector of Q4 being grounded. Thus,

V 1 = 0 (5.2-1)

Y1 --"

V 6 = 0

Y6 =

In addition, the bias conditions of Q1 and Q2 and of Q3 and

Q4 are identical; and, when matched transistors are used, the

following equalities are also valid:

gel = ge2 (5.2-2)

Yel = Ye2

Ycl = Yc2

Yc3 = Yc4

)

Also, the interstage load admittances are made equal so that

Y3 = Y4 (5.2-3)

5.2-1



With the above simplifications, the admittance matrix

becomes

Y

2+Yel 0 -Ycl

+Ycl

0 Y3+Ye3 0

Ycl+Yc3

-Ycl 0 Y3+Ye3

+gel Ycl+Yc3

0 -_ =Yc3 0 YS +

+ge3 Yc3

-Yel

-gel

.

0 0 0

-y
e3

, -ge3

-Ye3

-ge3

0 -Yel

-Yc3 -gel

-gel

0

0 0

2Yel

+2gel

-Ye3

=Ye3

=ge3

0

I
I
f

2Ye3 ;

÷2ge3 ,,
I

t
!

- /

(5.2-4)

i
i

5.2-2



and the voltage and current vectors simplify to

V

!V 3

V 4

V 5

Vel

Ve2

(s.z-s)

i = (i 2, o, o, o, o, o) (s 2-6)

The determinant can be simplified by factoring out 2Yel + 2gel

from the fifth row and 2Ye3 + 2ge3 from the sixth row. Aiso,

multiply the new fifth row by Yel and add it to the first

ro_ and by gel and add to the third row. The resultant deter-

minant then becomes

YI = (2Yel+2gel)(2Ye3+2ge3 )

Y2+Ycl 0 -Ycl

+Yel/2

0 0 0

0 Y3+Ye3 0 -Yc3 -gel

Ycl+Yc3

gel/2 0 Y3+Ye3 0 0

-Ycl Ycl+Yc3 •

0 -Yc3 0 YS + 0

+ge3 Yc3

-112 o o o 1 o

0 -1/2 -1/2 0 0 I

S.2-3 (S.2-7)

-Ye3

-Ye3

-ge3



Expanding the determinant by cofactors, one obtains

I ) (,A2,)Vel IAll - Ycl _ Ia31IYI = K YZ * Y¢1 + T +
(s.2-8)

where K = 4(Yel + gel )(Ye3 + ge3 ) and AI, A2, and A 3 are 4 x 4

matrices given by

IAII

Y3+Ye3

Ycl+Yc3

0

-Yc3

+ge3

-1/2

0 -y
c3 -y

e3

Y3+Ye3 0 -Ye3

Ycl+Yc3

Y5 -ge3

+Yc3

0

-I12 0 1

(5.2-9)

IA21

Y3+Ye3

Yd+Yc3

-Yc3

+ge3

-Yc3 -gel -Ye3

Y5

+Yc3

0

0

-1/2 0 0 1

5.2-4

-Ye3

-ge3

C5.2-1o)



IA3 1

0 Y3+Ye3 -Yc3

Ycl+Yc3

gel/2

-Ycl

0 0

-Yc3 Y5 +

+ ge 3 Yc3

0 -1/2 0 1

-Ye3

-Ye3

=ge3

(5.2-Ii)

Evaluating the determinants of the A-matrices gives

2

[AI[= Ye3 Yc3 ge3 Yc3
+ (Y3 + Ycl + Yc3 )

2 2

+ (Y3 + Ycl )(Y3 + Ye3 + Ycl + Yc3 )(Y5 +Yc3 )

+ YS Yc3 (Y3 + Ye3 +Ycl + Yc3 ) (s.2-12)

gel Yes (Y5 + Yc3 )

(S.2-13)

5.2-5



IA31 + Yc3) (Y3
Ye3

+ _ + Y
2 cl + Yc3 )

('e3)}+ Yc3 _ - Yc3 (S.2-14)

Combining terms then yields for the determinant of the

admittance matrix

[{ l{[ 1IYI = K Y2 Yel + y . Y3 3 + Ycl
+ 2 cl " + Ye '+ Yc3

(Y3 + Ycl )(Y5 + Yc3 ) + Y5 Yc3]

g,e3 Yc3 Ye3 Yc3 2
4-

2 (Y3 + Ycl + Yc3 ) + 2 }

÷

gel Ycl {2 (Y3 + Ycl )(Y5 + Yc3 ) +

+ Ycl { Ycl Yc3 2

Yc3 ge3 Ycl

Y5 Yc3

ge3 Yc3
4-

2 )

-{Y3 +

Ye 3

+ Ycl + YC3 ) Ycl (Ys + YC3)}]

5.2-6

(S.2-15)



We now proceed to calculate the transfer admittance by

determining the dependence of V 5 on i2. The matrix for V 5

is given by

Y2+Yel 0 "Ycl i2 -Yel

+Ycl

0 Y3+Ye3 0 0 -gel

Ycl+Yc3

-Ycl 0 Y3+Ye3 0 -gel

+gel Ycl+Yc3

0 -Yc3 0 0 0

+ge3

-y
el

-gel

0

0 0

-Ye3

-ge3

-Ye3

-ge3

0
2Yel

+2gel

0

=Ye3

-Ye3

-ge3

0

2Ye3

+2ge3

S .2-7
(5.2-16)



Performing similar elementary operations as used in

reducing IYI, one can simplify equation 5.2-16 to

]Yv5 [ = K

IN11
+ IB21 i 2 (5.2-17)

where B 1 and B 2 are 4 x 4 matrices given by

IBII =

Y3+Ye3

fcl+Yc3

0 -gel -Ye3

0 Y3+Ye3 0 -Ye3

Ycl+Yc3

-Yc3

+ge3

0 0

-1/2 -1/2 0 1

-ge3

(s.2-18)
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{BE[

0 Y3+Ye3 0

Ycl+Ye3

-Ycl 0 Y3+Ye3

+gel/2 Ycl+Yc3

0 -Yc3 0

+ge3

0 -1/Z -1/2 1

-Ye3

-Ye3

-ge3

(5.2-19)

Evaluating these determinants one obtains

i2KY31Y,Iyvs I = _ gel ge3 i + cl Yc3

- 2 Y3

_ XNI(s.z-2o)

where XN is a non-minimum phase term given by

XN = Ycl + Yc3 + (Ycl._ (Yc3_. Ye3

gel ge3 kgel/ \ge3/ Y3 + Ycl + Yc3

(5.2-21)

5.2-9



The transfer admittance then becomes

VS -gel ge3 (Y3 + Ycl + Yc3 )(I - XN)
ZT

= 12 zIY'I
CS.2-22)

IYI

K

Combining terms, one obtains for the determinant

IY'l

:.,2,{,,,,,E'e3'c311Y3' S 3 + Yc3 2

I YS 1 + cl' , Ye3 - 2Y3"

Y3 gel

z_'j j

+ Yc3 ge3 r" 2Ycl 2Y I

i c3 ii .-2Y3' gel ge3 1

2Ycl

-gel
l

where

!

Y2

!

YS

Y3'

Y
I!

3

Y

Y2 + el + Ycl
2

Y5 + Yc3

Y3 + Ycl + Yc3

Y3 + Ycl + Yc3 + Ye3

S.2-I0

(5.2-23)



If

2Yc1 << gel (5.2-24)

2Yc3 << ge3 (5.2-25)

(5.2-26)

then

-gel ge3

/'[ j L' Ji
r 7 ]

2 Y2' Y5 w Y3" +Yc3ge3_2 +gelYcl'2 5v + Yc3ge3('2Y3'

(5.2-27)

5.2.1 Input Admittance and Voltage Gain Representation

The voltage gain, defined by

V5 Y2

.Mv = lira i2 , (5.2.1-I)

Y2 ÷oo

can be found directly from equations 5.2 22 and 5.2-15. In

this case the equations simplify to

M v

( "3Yc3}I}-gel ge3 Y3 1 + Ycl Y 1 - X N

(5.2.1-2)

5.2=II



+Y I 3"c31,]5 Yc3 + 2 3 -+ Ycl + Yc3

Ye3 Yc3 2

For the same substitutions as made in simplifying equation 5.2-23,

-gel ge3 (I - XN)

YS' ,, ge3 Yc3 2 i + Ye3 ]Y3 + _,
• 2 Yc3 2y 3

{5.2.1-3)

If

and if

2Yc3 I + 2y 3 << ge3 (5.2.1-4)

Ycl << gel (5.2.1-5)

then

-gel ge3

2 5' " + ge3 Yc3Y3 2

5.2-12



In addition to the voltage gain, one generally also needs

the input admittance, defined by

i 2

YIN = _22 (5.2.1-7)

The determinant for V 2 obviously becomes

IYv2 [ = KIAl[i 2 (5.2.1-8)

where IAII is given by equation 5.2-9. Because

IYv21

V 2 = _ (5.2.1-9)
IYl

then

i2 IY[ Yel

YIN = = Y2 + Ycl + Ycl {

IYvzl z

IAzl
2 + IA31

IAll

(S.Z.l-10)

5.2-13



The first three terms result from the admittances hung

directly on the input. The last term, proportional to Ycl'
results from the Miller effect, motivating us to define

YM1 by

Yel
YIN = Y2 + Ycl + -2-- + YM1 (5.2. l- 11)

where

YMI- = MVI Ycl

MVI

IA21
-T- + IA31

IAII

The numerator of the equation for the first-stage voltage gain

MVI can be simplified using equations 5.2-13 and 5.2-14, which

imply that

{A2} I,,,- _ + IA31 = (Ys + Yc3)(Y3 + Y 1 )
2 2 c

ge3 Yc3 ] [
+ Y (Y5 +

2 cl

ge3+ Ycl + Yc3 ) + Yc3 2

Ycl Y5 e3

Yc3
Y3' +

2

+ Yc3 Y5

Yc3)(Y3
Ye3

2

Yc3)]
(ge3- 2Yc3) I"

(5.2.1-12)

5.2-14



Similarly,

IAll
IYc3 ( ge3Y3' 2 + Y5'

Yc3 2 Ye 3

(S.2.I-13)

If
2Ycl << gel

2Yc3 << ge3

(5.2.1-14)

(5.2.1-15)

Ycl

Yc3

<<

<<

Y3'

Ye3

!

Y3

Ye3

gel

ge3

(5.2.1-16)

(5.2.1-17)

then

MVI

2 IY 3'

gel

'e3IYc3 ge3

2Y3' YS '

+

1 +

(S.2.1-18)

5.2-15
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PULSE SHAPING IN PULSE-HEIGHT ANALYZER SYSTEMS

J. H. Marshall

July 26, 1966

1.0 INTRODUCTION

The choice of the correct pulse shape in pulse-height

analyzer systems is often a series of involved compromises

between such factors as statistics, noise, accuracy and com-

plexity. In order to avoid the small chance that random

choices will converge on an optimum system in the presence

of so many interrelating factors, an analytical approach is

essential. To provide a basis for such an analytical design,

a theoretical treatment of the effect of pulse shaping on

pile-up and noise is given here.

2.0 ERRORS RESULTING FROM RANDOM EVENTS

In addition to systematic errors such as gain drifts or

bias changes, many experiments are subject to various forms of

random errors. For example, thenumber of radioactive decays

occurring during a fixed time interval is not uniquely pre-

dictable. Similarly, the number of pulses generated by thermal

noise during a fixed time interval can only be determined on

the average.

Extensive analysis of the statistical theory of such ran-

dom behavior is available in the literature (1) It will be

possible here only to summarize some of the main points of this

theory relevant to particle-counting experiments.

(I) Harold Cramer, Mathematical Methods of Statistics, (Prince-

ton University Press, 1958).



2.1 Statistical Distributions

Many experiments involve the repeated sampling of a ran-

dom variable. In such experiments, the experimenter usually

wishes to know relevant parameters of the statistical distri-

butions describing the phenomena in which he is interested.

For example, he might wish to determine the average rate of

a radioactive decay or the average number of solar X-rays

lying within a given energy range. A powerful theorem of sta-

tistical analysis, called the central limit theorem, states

that nearly all distributions describing such physical phenom-

ena approach the normal distribution as the number of observa-

tions becomes sufficiently large. The frequency function for

the normal distribution is given by

P(x) : I exp - (x-m) z (2.1-1)

"_-_o 2o 2

where P(Xo) dx represents the probability that the variable

x lies within dx of x o. This function has a mean value of m

and a standard deviation of _, where m and _ are defined by

m = x P(x) dx (2.1-2)

o_

o 2 (x-m) 2 p(x) dx (2.1-3)

-2-



and P(x) is obviously normalized so that

OO

1 = / P(x) dx
(2.1-4)

The normal distribution contains only two parameters, m

and _. If one knows that the phenomena being measured are nor-

mally distributed, then the purpose of an experiment becomes

the determination of m and a at various times or under changing

conditions. Even for non-normal distributions, the mean and

root-mean-square width will be good estimators for the proper-

ties of the actual distribution. For example, in an experiment

to determine a counting rate, the best estimate of the mte is

the total number of counts divided by the total time during

which they were accumulated. Similarly, the average energy

of a particle providing a peak in a pulse-height spectrum lying

between channels n and k can be calculated from

B

E =

k

NiEi

i=n

k

l=n

(2.1-5)

where

N. =
1

1

number of counts in the ith channel

equivalent energy of the ith channel

-3-



If the rms width of the peak is _i' then the accuracy with

which the mean input energy can be determined is

o 1

o ._ (2.1-6)

where N = number of counts in the peak. Thus, repeated mea-

surements of a noisy distribution can improve the accuracy

of the determination of the input signal. In order for this

technique to be fully effective, gain drifts, offset changes,

or other purely systemic effects must be constant during the

period of measurement. These concepts can also be generalized

to include continuous functions. In this case the mean becomes

I/Tm * lira 2T f(t) dt (2.1-7)

T_ _

with a variance given by

O

T
F"

1
f f2(t) dt - m 2 (2.1-8)

2 = lim 2T

T __ Co

One of the most common distributions p_esent in counting

experiments occurs when one considers the result of multiple

trials of an experiment which may either succeed or fail. For

-4-



example, when tossing coins, the coin may come up heads or

tails. Similarly, a given particle may or may not have an

energy in excess of a predetermined amount. If the_obability

of success on One trial is p, then the probability of r suc-

cesses in n trials is given by

(n1pr = pr (l_p)n-r (2.1-9)

r

where

n) = Binomial coefficient = n(n-l)...(n-r+l) = n.'r: (n-r) 'r!
r

This distribution has a mean value and standard deviation

given by

m = np (2.1-10)

o = Vnp (l-p)'

In the limit where n becomes large and the probability of

success is small but not vanishing, then

[ l

Pr -_ P(x) = _ _/i-_ml exp l_(x-m) 2[2m (2.1-11)

This limit shows that, as implied by the central limit theorem,

the binomial distribution approaches a normal distribution with

a standard deviation equal to the square root of the mean number

-5-



of counts accepted. This fact is the basis for the usual

statement that the statistical error equals the square root

of the number of counts. (Note that when the probability of

success is not small, the exact formula 12.1,I0 [ must be used.)

By dividing the standard deviation by the mean, one obtains

the fractional error given by

o 1

m (2.1-12)

Thus, by accumulating more counts, the experimenter can improve

the accuracy of his measurement.

Another interesting limit of 2.1-9 results when

p = X/n (2.1-13)

so that p ÷ 0 as n ÷ _. In this case the binomial distribution

approaches the Poisson distribution, given by

_r -x

Pr r' e (2.1-14)

with a mean value of _ and a standard deviation of A_.

This distribution results when one considers the probabil-

ity that one or more random pulses occur in agiven time inter-

val immediately following another pulse. In this case the

parameter _ becomes Rt, where R is the mean counting rate and

t is the measuring interval. The parameter r is the number of _

pulses in the interval, and the probability Pr becomes

p = (Rt) r -Rte (2.1-15)r r]

-6-



The probability that the first pulse occurs at t is then

-Rt
1 Po = l-e (2.1-16)

The probability that the first pulse occurs at a time t

within dt then results from differentiating 2.1-16,

R(t)dt = Re-Rtdt (2.1-17)

Several applications of the above general principles

will be given in the following sections. The problem for

the instrument designer is then to choose the parameters of

his system so as to prevent these statistical effects from

unnecessarily contributing to measurement errors.

2.1.1 Rounding Errors

Often digital data compression techniques are

applied to reduce unnecessary use of limited data transmis-

sion facilities. When such techniquesare used, rounding

errors occur. The addition of these errors to over-all system

accuracy can be calculated as follows.

The distribution that describes a rounding error

is the rectangular distribution defined by

I/C - C/2 < x < C/2

P(x) = (2.1.1-1)

0 otherwise

where C is the total resolution of the digital system.

mean of P(x) is

The

OO

m = / xP(x) dx = 0 (2.1.1-2)

-7-



andthus one should take the center of the interval as the

best estimate. The error given by

o = x2p(x)dx = C

2"V (2.1.1-3)

should be added to other system errors as the square root of

the sum of_the squares.

2.2 Errors from Variable Counting Rates

Because the percentage error decreases with an increas-

ing number of counts (see equation 2.1-12), the experimenter

often will choose to accumulate as many counts as possible. If

the measuring time is limited, then high counting rates may re-

sult. These high rates can cause errors in addition to those

discussed in Section 2.1, because of dead-time or amplitude

shifts in the signal processing system. A poorly designed sig-

nal processing system can unnecessarily compound these errors.

Before embarking on a detailed analysis of rate-dependent

effects on a linear analyzer system, we wish to remark that

poorly designed systems can have non-linearities that signifi-

cantly increase the purely statistical errors. For example,

if pulse amplifiers do not have sufficient dynamic range and

linearity, base-line shifts occurring at' high rates can pro-

duce gain changes (2). The need for good linearity then not

only becomes necessary for ease of data analysis, but also is

necessary to eliminate rate-dependent gain shifts. Such lin-

earity usually can be achieved by the use of sufficient negative

(2) Fairstein and Hahn, Nucleonics 2_3_3,(July, September, Novem-

ber 1965 and January, March 1966).

-8-



feedback and by intelligent design of circuits handling

large signals. This sophistication is also required to pro-

vide independence of temperature and aging of active elements.

A typical pulse-height analyzer system is shown in

Figure 2.2-1. Pulses from a particle detector enter an ampli-

fier containing pulse-shaping elements. The amplifier output

signal then passes through a linear gate into an analog-to-

digital converter. For this analysis we will assume that

these latter circuits are direct-coupled and fast enough so

that all pulse shaping is effectively performed before the

linear gate. The gate is opened and closed in response to

coincidence or busy signals generated in external logic cir-

cuits.

Experiments in which such pulse-height analyzers are

used typically require the measurement of pulse-height dis-

tributions for particular events in the presence of a random

background of uninteresting pulses. The desired events are

often selected by coincidence logic or by the presence of a

distinguishing feature in the pulse-height spectrum, such as

a peak. Not only may the background make the selection of the

desired events difficult, but it may also distort their pulse-

height spectrum. This distortion may appear both as a varia-

tion in the average measured amplitude for the desired events

and as a smearing of sharp features, such as peaks, in the

pulse-height spectrum. These effects result from the fact

that at high rates an appreciable probability exists that the

sum of two or more pulses may be analyzed concurrently, so

that each event cannot be treated as a separate entity. The

presence of capacitative coupling compounds this problem,

because it may be possible to supply an average charge tO the

-9-
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coupling capacitor, resulting in the shift of a critical base-

line voltage.

We will consider two modes of control of the linear gate

which result in significantly different statistical errors.

In the first mode, the events of interest are selected from a

random background by external coincidence logic or by the fact

that the signal of interest has a very much larger amplitude

than the background. The linear gate remains constantly closed

except when the interesting event occurs. In the second mode,

the gate remains constantly open, except during busy periods

for the analyzer, and events are analyzed on a first-come,

first-served basis.

2.2.1 Coincidence-Gated System

In a coincidence-gated system a typical problem is

to measure the amplitude produced by a particular event selected

by external means. If there is no correlation between the times

that the gate is opened and the background events, then the back-

ground pulses are being randomly sampled. If the maximum varia-

tion of the signal peak lies within the _near region of analy-

zer operation and does not overlap any additional signal peaks,

then the best estimate of a given peak is found by calculating

the mean channel number (or equivalent input energy) for events

in the peak. Similarly, the peak width can be measured by cal-

culating the root-mean-square value. Both these quantities

can vary with increasing counting rate, and this variation can

be estimated as follows:

Let the amplifier pulse shaping be independent of

amplitude so that the contribution to the amplifier output level

(VI) from the ith pulse at a time t is:

Vli = Voi f(t-t i) (2.2.1-1)

-11-



where

V
oi

.th
= peak value of the z pulse

f = pulse-shape function normalized to a value

of one at the peak

t °

1

.th
time of arrival of the z

any pure delay effects
particle, ignoring

If particles began arriving at the detector at a time T 1 and

N 1 particles have arrived between time T 1 and time zero, with

N 2 particles between time zero and time t, thenthe total out-

put voltage at a time t becomes:

Vl(t) = Voi f(t-t i) + Voi f(t-t i) (2.2.1-2)

i=l i=Nl+l ,.

If the linear gate opens occasionally at random times start-

ing at time zero, then an average peak shift given by the aver-

age value of Vl(t ) occurs. This average can be calculated

from

T

V 1 = lira T2 Vl(t) dt (2.2.1-3)

T 2 _
0

Substituting from equation 2.2.1-2 for Vl(t), one obtains

N_ /T 2

ll__ V f(t-ti)dt
V 1 = lira T 2 oi

T2 ÷_ i=l 0

(2.2.1-4)

N2(T 2) T 2

+ Voi f(t-ti)dt

i=Nl+l o

-12 -



The integral can be evaluated as follows:

T2 fo T2 - t if(t-ti)dt =

0

f(t') dt' (2.2.1-5)

where

t' = t-t.
1

and

f(t') -- 0 for t' < 0

In the limit that T 2 approaches infinity and if the integral

converges to KI, then

m 2

tim/ F= . f(t')dt' = K 1
T2 ÷_ f(t-ti)dt J0

0

(2.2.1-6)

Because the integral in the limit is independent of ti, it can

be factored out of equation 2.2.1-4 leaving

V I = K1 lim T2 Voi

T2+_ i=Nl+ 1

(2.2.1-7)

-13-



The average value of the peak amplitude of the

background spectrum can be written as

N2_ 2) Vo i

_o = lim i=Nl+l '

T2-_=o N 2 (T2) - NI

(2.2.1-8)

If the pulses arrive at an average rate R, then on the average

Nz(T2) _ NI = RT 2 (2.2.1-9)

and equation 2.2.1-7 becomes

V 1 = K1 R V o (2.2.1-10)

Notice that K I can be determined directly from

the Fourier transform of f(t). This transform is given by

F(jm) = f(t) e -jmt dt (2.2.1-Iia)

with an inverse transform of

t

r

i

iF

f(t)
2_ / F(j_) ejmt

-14-
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so that

K1
F_ f(t) dt:Jo F(jm) ejmt

--00

d_dt

(2.2.1-12)

Inverting the order of integration and remembering that

ej _t dt = 2_ 8 (m) (2.2.1-13)

Then

K 1 = F(0) (2.2.1-14)

Similarly one can calculate the root-mean-square

variation of V 1 from the above mean. The variance is' given by

o2 : (V1 (t) __1) 2 (2.2.1-15)

Performing the squaring and averaging operations, one obtains

0 2. : V12(t) - V--ll2 (2.2.1-16)

-15-



Substituting for Vl(t ) from equation 2.2 1-2 and squaring,

Nz(t) N2(t)

Vl2(t) = I i Voi Voj f(t-t i) f(t-tj) (2.2.1-17)

i=l j=i

Again averaging over a time period from zero to T 2 and letting

T 2 approach infinity,

V
= lira T2 oi

T 2 +=
i,j=l

V
oj f(t-ti) f(t-tj)dt

Arranging terms,

(2.2.1-18)

1
VI 2 = iim T

2
T2-_=

N ) T

F 2
,/ f(t-ti) f(t-tj)dt-- Voi Voj j

i,j=l 0
(2.2.1-19) _

Recognizing that f(t) vanishes for negative times and separat-

ing the cross-terms from the squared terms,

Vl2

N2(T T2 1lim TI _ --I f2(t')dt'

T2 -_oo _22 (i=N I+

1
+ lim T

2

T 2 +=

)

Voi2 /

1

N2(r 2)

I 2 Voi

,J=NI+I
-16-

j>i

Voj/
T 2 .

f(t')f(t'+t.-t
i

j)dt'}

(2.2.1-20)



The above integrals are autocorrelation integrals and obey

several well-known laws (3) For example, a simple relation

ship exists between the integral and the Fourier transform

F(j_) of the pulse response.

l(tij) = f f(t) f(t+tij)dt _ 1 /
2_ IF(j_)I 2 e-J_tij d_

(2.2.1-21)

where

tij = t i - tj

This result can be simply proved by substituting thedefini-

tion of F(j_) from equation 2".2.1-11, integrating over t applying

equation 2.2.1-13 and using the fact that F(-j_) = F_(je).]

In the limit of infinite T2, equation 2.2.1-20 becomes

N2(T 2)

V-_ ----ff + lim 1 T
= RK 2 V o T 2 _ 2Voi Voj ¢ (tij)

2 i,j=Nl+l

j>i

(2.2.1-22)

where

K 2 = ¢(0) = f2(t)dt- 2_

0 -oo

(3) Y. W. Lee, Statistical Theory of Communication, (John

Wiley and Sons, Inc., New York).
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Vo2 := lim

N2 +_

The second term of ec

N 2

2Voi

i=nl+l

N 2 - N 1

uation 2.2.1-22 can be written as

Nz(T 2) N2(T 2)

1 _ 2 Voi _ Voj¢(tij)
lim T2

T 2 ÷_

i=Nl+l, j=i÷l

(2.2.1-23)

In the limit of infinite T2, many values of tij and Voj appear,

allowing the second factor in 2.2.1-23 to be simplified by

averaging over t..x]and Voj. Applying the same techniques

used in simplifying 2.2.1-4, one obtains

T

N2 (T2) F _

lim _ V°j*Ctij) = V°R J0 *(tij) dtij (2.2.1-24)
2 ÷_

j=i+l

Replacing _(tij ) by its Fourier transform given in 2.2.1-21,

interchanging the order of integrations over t.. and _, and
xj

using the delta-function relation of 2.2.1-13, then

Nz(T2) V RIF(0)12

lim %-_ Voj _(tij ) = o 2 (2.2.1-25)

T 2 +_
j=i+l

Substituting this expression in equation 2.2.1-23 and remember-

ing that F(0) is real and equal to KI,

V12 = RK 2 Vo2 + (R_oK1)2
2 2 (2.2.1-26)

RK2V o + V 1
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-- +

and the variance becomes

°2 = RK 2 _ (2.2.1-27)

The results given in equations 2.2.1-10 and 2.2.1-27 are

special cases of Campbell's theorem (4).

The above analysis _ important in determining

the optimal pulse shaping for an analyzer system operating

at high counting rates. The average peak shift should be

made to vanish by choosing f(t) such that K1 is zero. This

requirement is equivalent to choosing a wave shape with a

vanishing Fourier transform at zero frequency. Thus, if RC

pulse shaping is used and if the time dependence _ the detec-

tor signal can be approximated by a delta-function, then at

least two differentiating time constants are required - that

is:

jmTiC
F (j to) = (2.2.1-28)

(l+j _ I) (l+J m_2)

This function obviously satisfies F(0) = 0j so that K1 also

vanishes and no shifts of average peak position should occur

in a well-designed, linear system.

The reduction of peak spreading requires several

considerations. Obviously, the pulse width should be as short

as possible, limited by the detector output pulse width, avail-

able circuit elements and system power constraints. Notice

that in evaluating the limit of infinite T2, the period during

(4) S. O. Rice, "Mathematical Analysis of Random Noise" from

Selected Papers on Noise and Stochastic Processes, edited

by N. Wax (Dover Publications, Inc., New York, 1954).
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which averaging was performed had to be long compared to any
variations in f(t). If the count rate is also variable be-

cause of a pulsed particle source or a rotating spacecraft,

no time constants in f_t) of the _der of the time for appre-

ciable rate variations should be present. Otherwise, the

averaging technique performed above will not be valid, result-
ing in unexpected peak shifts and increased line widths (4).

Thus, when RC pulse shaping is used, the optimal system re-

quires that all time constants be roughly equai and short

compared to the average spacing between pulses.

If the ultimate is required in negligible effects
at high rates, "inspection" circuits are often employed. Such

a circuit allows the linear gate to open only when no back-

ground signal is present at the input. In this way peak smear-

ing is reduced at the expense of increased dead time. Again

short time constants are required to prevent pile-up and base-

line shifts which could cause large and unnecessary increases
in dead time.

As an example of the above techniques, consider

the double-differentiated, double-integrated function given

in Laplace transform by

F(p) = [ P_ ! [ 1 ] " (2.2.1--29)(l+p_) 4 0.131

(4) Rice, Loc. Cir.
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with an inverse transform of

it) It) ct)3 - exp
f(t) = _-_ , (2.2.1-30)

0.786

which is normalized to a value of unity at the_ak. This

wave-shape provides moderate independence of detector or

amplifier open-loop rise times, while still being easy to

mechanize. Also for many applications nearly optimal noise

performance can be achieved by a proper choice of the shaping

time constant T.

The Fourier transform obviouslY vanishes at zero

frequency so that K 1 = 0, and no shifts ofthe mean peak posi-

tions should occur. The peak broadening can be calculated

from equation 2.2.1-27:

a 2 2/+= R r° IF(j 0)
2_r

--O0

2 d_ (2.2.1-31}

An estimate of the order of magnitude of these

peak broadening effects can be generated by considering a

256 channel analyzer operating at an average, rate of I0 _

counts/second. If the rms value of the background were 20%

of the signal peak, then, for t = 1 _s, the rms peak broaden-

ing would be 2.7%, or 6.9 channels, for a signal peak in

channel 255.

-21-



A wave-shape often used for high counting rate

systems is the "double delay-line clipped" function, given
by

V(t)

V o 0 < t < T

-V o _ < t < 2_

0 otherwise

(2.2.1-32)

This function also has a zero mean and a standard deviation

given by

o -- 1.41,j (2.2.1-33)

According to these criteria, the pulse shapes of

equations 2.2.1-30 and 2.2.1-32 are nearly equivalent. The

double delay-line clipped technique is not recommended for

spacecraft use because of problems involving size, temperature

stability and ringing of delay lines.

2.2.2 Open-Gate System

As the average time between gate openings approaches

the analyzer dead time or if the gate remains continually open

except during an analysis _riod, the mmputation of the mean

shift given in the previous section breaks d6wn. Because of

the methods of construction of most analyzers and because of

fundamental limitations in the data analysis, not all portions

of the input pulse can be treated identically in calculating

-22-



the mean peak shift. This statistical bias will result in

a shift in the mean value of a portion of the pulse-height

spectrum, even though the average pulse amplitude vanishes.

Most pulse-height analyzers use some form of

peak detection to begin the analysis and actually measure the

peak value of the pulse. A dead time then results during
which the analyzer processes the event. For analyzers employ-

ing the capacitive-rundown technique, this dead time is roughly
proportional to the input amplitude. For binary-search or

stacked-discriminator analyzers, the dead time is nearly in-

dependent of the input pulse height.

This dead time results in the loss of an event

which follows an analyzed event in a time less than the dead

time. The probability that a particle actually is emitted

during this period results from the analysis of the Poisson

distribution. From equation 2.1-15, the probability that no
particles are lost becomes

where

Po = exp (-RT) (2.2.2-1)

R = average rate

T = dead time

The average number of lost particles per discriminator trig-

gering is given by

NLOST rPr(T) = m(T) = RT (2.2.2-2)

r=l

-23-
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Although this dead-time loss may be large, accur-

ate data corrections can be made if the dead time itself is

well known. Such corrections are complicated if the dead time

is a function of the amplitude of the triggering pulse, because

then both the pulse-height spectrum and the_erage counting

rate must be included in generating a rate correction. If

the dead time is principally determined by a discriminator

pulse width and if this pulse width is independent of the rate

and of the triggering amplitude, then only the average rate of

discriminator triggering (R') need be known. This rate can

then be used to find the true average rate from

R !

R = 1 R'T (2.2.2-3)

In order to reduce the dependence of the dead

time on the pulse-height spectrum, the amplifier pulse width

must be considerably less than that of the discriminator. Also,

the discriminator threshold should rapidly recover to its

nominal value after the output returns to its quiescent state.

The usual capacitive-rundown analyzer does not

satisfy the requirement that the dead time is independent of

the triggering amplitude. However, an estimate of dead-time

losses can often be made by using an average dead time produced

by the average event in the pulse-height spectrum.

In addition to causing events to be lost, this

dead time contributes to statistical biases _roducing peak

shifts. These biases primarily result from slowly varying

"tails" on the amplifier output pulses.
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The typical amplifier-analyzer system usually
possesses both primary and secondary pulse shaping networks (2).

The primary networks principally determine the pulse shape
and amplitude for short times and result in a transient re-

sponse which is rapidly varying with large amplitudes. This

network provides most of the bandpass shaping required for

proper analyzer operation and noise performance. Often secon-

dary pulse-shaping networks are also present caused by capaci-

tive couplings between amplifier stages. These time constants

generally produce slowly varying s!gnals with amplitudes for short
times small compared to those from the primary networks. How-

ever, the large amplitude primary transient rapidly decays, so

that for longer times the slowly varying secondary network
response dominates.

These considerations motivate the division of the

amplifier output pulse into two time regions such that

f(t) = fl(t) + f2(t) (2.2.2-4)

where fl(t) is rapidly varying and contains the pulse-height

information, and f2(t)is slowly varying and results from

secondary capacitive couplings. Included in fl(t) are the

effects of the primary pulse-shaping networks, and the ampli-

tude of fl(t) for short times is usually much larger than that

of f2(t). Typically fl(t) lasts for times very short compared

to the time required to analyze an event, while f2(t) lasts

for times comparable to or greater than this analysis time.

In the analysis of Section 2.2.1, the response of

the analyzer and data analysis to fl(t) and to f2(t) was assumed

(2) Fairstein and Hahn, Loc. Cit.
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identical when these signals resulted from background events.

For high rates of analysis and for an open-gate'system, this

assumption fails to be valid for several reasons.
l

In the open-gate system it is usually necessary

to select events of interest by the position and shape of

their pulse-height spectrum. Several interesting types of

events, together with an uninteresting background, may be pre-

sent in the same pulse-height spectrum. The mean value of a

portion of the spectrum can no longer be determined by averag-

ing over the entire spectrum, as implied in the analysis of

Section 2.2.1, because of the distorting effects from the other

events. These events are no longer excluded from the spectrum

by external coincidence logic, and the problem becomes more

complicated than just calculating the accidental coincidence

between background and interesting events.

Furthermore, the first-come, first-served nature

of the analyzer complicates the nature of the pile-up of the

posltive portion of fl(t). (For definiteness, the peaks of

the pulses being analyzed are assumed to be positive.) Most

analyzers detect the change in sign of the slope of the mput

pulse and measure the value of the concurrent maximum. Almost

immediately after this maximum is detected, the gate is closed

and further pulses are excluded until the analyzer _ finished

processing the event. Therefore, when two pulses add with

relative timing such as not to change the peak value, the

analyzer will not generate a distorted output even though the

average value of the positive portion may change. For example,

a pulse just following a detected pulse at a. time greater than

that required for gate closure will not effect the analysis of

the first pulse. Because the typical analyzer has a dead time

long compared to the duration of fl(t) and because the first

-26-



pulse to produce a maximum is always analyzed, except when the

analyzer happens to be busy with a previous event, it is im-

probable that the portions of fl(t) following the maximum con-

tribute to spectral distortions.

In addition, unless very high rates are present,

accidental pile-up of the rapidly varying portions of the

amplifier pulse is improbable because of the small width of

these pulses. When such pile-up does occur, the resulting

sum is usually very different from the value of either pulse

alone because the amplitudes in fl(t) are of the same order

as the maximum. Pile-up of these pulses then results in errors

approaching a factor of two (2), and often results in an analy-

sis Which is excluded as being outside the amplitude range of

interest.

Therefore, if one selects a narrow portion of the

pulse-height spectrum and performs an average over this portion

in order to determine, say, the energy produced by some process

of interest, then the above arguments imply that pile-up effects

resulting from the primary pulse shaping will be quite differ-

ent from those calculated from a simple average of fl(t). In

fact practically all of fl(t) for times larger than the time

for the maximum will contribute negligibly to spectral dis-

tortions. The contribution of the early parts of fl(t) depend

strongly on the particular pulse shape and on the method of

data analysis. Clearly the probability of finding just the

correct portion of fl(t) to shift the maximum significantly

without shifting it completely out of _e range of interest will

be small, unless the average spacing between pulses approaches

the width of fl(t). Therefore, in the following analysis of

peak shifts only the pile-up of the tails will be considered.

(2) Fairstein and Hahn, Loc. Cit.
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The procedure for calculating the tail pile-up
is as follows. Define t = 0 as the time of arrival of a

pulse analyzed by the system. The gate then closes from t = 0

to t = T, where T is the analyzer dead time. (The time from

the pulse arrival to the closing of the gate has been assumed

small compared to the dead time, and these small differences

have been neglected.) The effect of tail pile up at a time t,

where t > T, will be found by averaging over all possible

cases. Notice that the fact that a pulse was analyzed at

t = 0 implies that no pulses occurred in the interval (0, -T),

unless the analyzer was busy during this interval. The pro-

bability that the gate was closed during (0, oT) will be neglec-

ted in this analysis. This approximation is valid if the

average time between gate closures is small compared to the

gate width. For rapidly decaying pulses this approximation

becomes even more valid because of the decay of effects during

(0, _) in the interval (0, T). For the purpose of simplicity,

an average over pulse amplitude and dead time is implied so that
all pulses can be considered to have the same amplitude and
dead time.

Consider Figure 2.2.2-1, which illustrates the

effect of n + 1 pulses in the interval (0, T) and m pulses in

the interval (-T, -_) on the base line at t, where t > T. If

a pulse were to arrive at time t, then the baseline shift at
this time would be

n m

fnm(t;tl-..tn,Sl-.-s m) = _. fCt-ti)+ _fCt+sj) (2.2.2-5)

i=0 j_-i

where

S -= -t
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We then average over all times of occurance of the next analyzed

pulse to obtain

_nm(tl'''tn'Sl'''Sm) =fT" P(t-tn) fnm (t) dt (2..2.2-6)

where
P(t-tn) dt = probability that the next pulse occurs

at t within dt when the _st pulse occurred at t
n

If we also average over the t. and the
i sj,

f'-nm--fT "_0-TfT''/T _T "_T _m_T

tl n-i

s 2

f(t-ti)+ f(t+sj)

i=o j=l

n m

x II P(ti-ti_ I) [I
i=1 j=l

P(sj-sj_ 1) P(t-t n)

x dSl...ds m dtn...dtldt (2.2.2-7)

where t = 0
O

s = T
O
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From equation 2.1-17 for the Poisson distribution and from the

fact that no pulses occur in the interval (0, -T), then

P(t i - ti_ I) = R exp -R(t i ti_l) (2.2.2-8)

P(sj - Sj_l) : R exp -R(sj sj _1 )

where

R = the average rate of pulses.

The above product of probabilities then reduces to

Rn+m+l
exp -R(t + sm - T) (2.2.2-9)

so that T becomes
nm

T
nm

._T "iT/T "4 T "_f'Sm (_s2Rn+m+l "" / [ "'j

0 1 tn_14 "iT T

f(t-ti)+_ f(t+sj)Z

j=l

x exp -R (t+Sm-T) dSl..-ds m dtn...dt I dt (2.2.2-10)
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In order to average over all values of n and m, we must allow

sm to extend into the infinite past and also sum over all

possible numbers of pulses in the interval (0, T). Thus,

T = I im _-_ i[n m

m -_
n=O

(2.2.2-i1)

For the integration and summation over i, the

only dependence on the sj is through the exponential term,
which becomes

Rm £ Sm

Jm • • •

T

exp -R (Sm-T) ds I -.. ds m

R- 1 R(s m -T) m-I
= exp-R(s m -T) ds

m-l_ m

T

= 1 (2.2.2-Ii)

Similarly the summation and integration over the j terms can

be simplified by factoring out the integral over ti, which

becomes

/•../ dt n -'- dtl - _.'

JO tI -t
n-I

(2.2.2-12)
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The integral then is given by

nm Rn+l ... f (t-t i

n-1

x exp -Rt dt n ... dt I dt

Rn+m+lT n exp Rt f f sm f's2F m

J ••" f(t-snl j j

T T T T

x exp -R(t+Sm) dSl..-ds m dt (2.2.2-13)

If one replaces f(t) by its Fourier integral transform, given

in equation 2.2.1-iib, then

1 /_ F(j_) expf(t-ti) = 2_

--CO

[j_(t-t ]I i) d_

(2.2.2-14)
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and the sum over i can be written

Rn÷l / F(j_o)
--00

X

T T T

fof"f
t I tn i

+ exp-j_t dt n..'dtl d_

i=l

=

+ exp- jmt dtn.., dtld_

R- j_
-. "0 i -I

R-j_
2_n'

. F j_T [t 1 /.I
Rnexp-RT f _ / J "'"+- "JO2_ (-Jt_) n R-jto ..% 0

n_>l , ' '

i_ exp-ti dtn'''dtl=i

(2.2.2-1S)

dco
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!

where the ti variables were changed to ti given by

!

t i = j_ (T - ti)

It can be shown that

_0 y /Xn /X2 n>_l n- i•-- _. exp aX i dXl...dX = Y_
_0 i=l n _ (n-l) !

(eaY-l)

(2.2.2=16)

ffhis relation can be proved by mathematical induction as

follows:

Assume that

Xn X 2 n- 1 Xn

"JO =1 exp aX i dX 1 ..dXn_ 1 _(n-2)_

(2.2.2-17)
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Then one needs to prove that the above also holds for the

addition of one more variable so that the integration is also

carried out over Xn, that is

/''[ex''X]f """ + exp dXl dXn-iaXn i Q e •

0 0 0 i=l

dX n

n-I /Xn+ 1 xn-2

Xn+l Xn exp (aXn)dX n
= + n

(n - 1):
0 0

(eaXn -I)

a (n-2) :
dX n

n-I Xn+ 1

n-2

Xn÷ 1 exp aXn+ 1 _ 1 X

0

Xn+l Xn-2 exp _X n n+l

xn-I

n dX -

a (n-_ n a (n-l)
0

exp (a Xn) dX n

xn-I
n+l

a(n_!. (exp aX.n+l-l) (2.2.2-17)

The relation is trivially proved for n = I, which completes

the induction.)
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Substituting equation 2.2.2-16 into equation 2.2.2-15

and realizing that the proof of 2.2.2-15 does not depend on the

order of integration, then the sum over i becomes

(RT)nz_n'eXp -RT/ RF(_OO)R_jtoexp j_T
doJ

(RT) n-1 exp -RT / R 2 F(j_) exp jtoT-1
2_ (n- I): jm (R- j_o)

d_

n _ 1 (2.2.2-18)

If the sum over n shown in equation 2.2.2-11 is also

and recognizing that

performed

I (RT) nexp RT = nT

i=O

(2.2.2-19)

Then the sum over i becomes

2_ . R-j_ [ 3m

exp juT
_ R ] d_oj_

(2.2.2-20)
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This integral is most easily performed as a contour integral

given by

2_j R---2-Z-" -'2- dZ (2.2.2-21)

C

where the closed contour C includes the imaginary axis (-j_,j_)

and an infinite semi-circle surrounding the negative half-

plane. Notice that the integral vanishes on the semi-circle

so that the value of the integral along the imaginary axis

(eq. 2.2.2-20) just equals 2_j times the sum of the residues

at poles in the negative half-plane. (This contour excludes

the pole at Z = R and, unless F(Z) has a pole at the origin,

the limit as Z + 0 shows that the remainder of the expression

is finite there. Thus, the only relevant poles are those of

F(Z) .)

The sum over j can be written as

(RT) n exp -RT

2. n: f /o t jf® f0 _ Sm S_ m ft'+s'. ,_ _i
• -- _ f J + 2Ti

J0 o Ljo /

x exp - (t'+Sm) dsi-.-ds m dt' (2.2.2-22)

where

t' = R(t -T)

s!
3 = R(sj-T)
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Performing the sum over n and substituting the Fourier trans-

form for f(t), one obtains

ll__ f F(jm) exp j m2T exp -t' 1 'J_! dt

2_d RI

X

S v S t

O 0 0

° .]tOS .

oxp expS'mdsldSm
(2.2.2-23)

Applying the relation given in equation 2.2.2-16, then the

above term becomes

[R f F(jto) exp j.to2T 1. -1

2 _ A j_. (1-jg) (1 - )m

Taking the limit of infinite m and using a contour integral with

the same contour as in equation 2.2.2-21, one obtains

R £ F(Z) exp 2TZ

2_j y (R-Z) (Z-_)

C

dZ (2.2.2-253
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where the Z - _ term implies that the pole at the origin should

not be included in the sum of the residues, because the limit

of the term in brackets of equation 2.2.2-2.4 as _ + 0 is finite.

(The quantity _ is an infinitesimal real-number which formally

prevents the denominator of the integrand from vanishing at the

origin but negligibly influences the residues at other poles.)

Combining equations 2.2.2-21 and 2.2.2-25, the total

baseline shift becomes

_ R i F(Z) 4{exp ZT
2_j R-Z

C
Ri !- _ exp 2ZT -exp ZT + I

J

(2.2.2-26)

dZ

where C surrounds the negative half-plane, including the imaginary

axis, and Z-e implies that a pole exists at the origin only if

F(Z) has a pole there.

According to a fundamental theorem of complex vari-

able theory, the integral of a function satisfying certain general

requirements around a closed contour is related to the "residues"

at the m poles contained within the contour by

i mG (Z) dZ = 2_j _ a k

C k=l

-40-
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where ak is the residue at the kt--h pole at Z = Zk and, for

a pole of order n, is given by

1 d n- 1 [ 1a k = (n-l):- dZ n-1 G(Z) (Z-Zk)n_i (2.2.2-28)

Z=Z k

This theorem can be used to evaluate simply the integral of

equation 2.2.2-26 to obtain

m

"f = R _ a k (2.2.2-29)

k=l

where the ak are given by

ak =
1 [ (Z) [exp ZT(n-1): dZ n-I (Z-Zk)n _-Z [

-= JJJz: zk (2.2.2-30)

and where Zk is a value of Z producing a pole of order n in

F(Z) and lying in the left half-plane. The summation in equa-

tion 2.2.2-29 is carried out over all m poles of F(Z) lying in

the left half-plane. (F(Z) has a pole of order n at Zk if and

_Zk)n-I nonly if lira (Z F(Z) is infinite, but lira (Z-Z k) F(Z) is

Z_Z k Z+Z k

finite.) -41-



In order to illustrate the implication of the

above results, consider the case where one secondary time

constant (_s) is used in a system with equal primary inte-

grating and differentiating time constants (_p). The La-

place transform, normalized to unit peak amplitude, is

AlP:
F(p) = s p (2.2.2-31)

2(l+p_ )(l+pTp) s

where for _ >>
s _p

A 1 m 2.73 (2.2.2-32)

This transform contains a double pole at Z = -1/_p, leading

to fl(t), and a single pole at Z = -1/_s, leading to f2(t).

The total baseline shift can be written as

:i" = Ra 1 + Ra 2 (2.2.2-33)

where
a I = residue at Z = -i/_

P

a 2 = residue at Z = -I/_ s

For the case where the dead time (T) is long compared to

so that P

T

-- exp (-T/Tp) << 1 (2.2.2+34)
_p

exp (-T/_p) << 1

and for T << • then
p s'

I I + I/2 RT ]Ral _ 2AI (R_p)2 P (2.2.2-35)

(i + R_p) 2
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An exact evaluation of the residue at Z =-i/_ s gives

Ra2 = l+exp -exp -_TT+

{ } ,Tp i + R_ s s s

l-_s
(2.2.2-36)

+lexp T_s

which reduces to

Als[ R, 21iRa 2 --- I+R_ s 1 + exp -2___TT-exp-T +
mp Ts _s

-- exp --

R_ s Ts j

(2.2.2-37)

when T <<
p s"

If T is sufficiently small compared to T
s

order expansion for the exponentials, then

to justify a first

(,)Ra 2 -- -AIRr p 1 - T_s (2.2.2-38)

For the case where

= 1 us
P

S

R =

25 _s

lO,O00 counts/second

Ra I = 0.055%

Ra 2 = 0.767%

then

(2.2.2-39)

(2.2.2-40)

The large contribution to the peak shift resulting

from the secondary differentiating network has long been recog-

nized (2). For this reason, double differentiation is often used

for the primary pulse shaping. If double integration is also

used, and if a single secondary differentiation is present, then

the Laplace transform becomes

A3 p2 TsTp2

F(p) = (i + ptp)4(l + pTs) (2.2.2-41)

-43-
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A fourth order pole at -I/_p and a first order pole at -I/_ s

are present in F(Z). The residue at -i/_ under the approxi-
P

mations given in equation 2.2.2-34 becomes

A 3 (RTp) 2

Rlal -_ (I+RTp) _ (2.2.2-42)

where

A 3 _ 7.64

and an exact evaluation of the residue at-I/_ s gives

ma =
2 A+ R+I ]I i++2+exp++1+T _-- _ exp --

___ (l+R_s) s s s Zs

(2.2.2-43)

When _p is small compared to Ts, this residue reduces to

Ra 2
A 3 (R_p) 2 [ 1 -T]

(I+R_s) Ll+exp -2T exp -T + _ exp -- [TS TS S TSJ

and for T sufficiently small compared to

order expansion of the exponentials,

T + [

-44 -
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For the case given in equation 2.2.2-39, then

Ra I = 0.0764%

Ra 2 = 0.0858%

(2.2.2-46)

The reduction by nearly an order of magnitude in Ra 2 indi-

cates the advantage of the double,differentiated primary

waveform.

Examination of equations 2.2.2-42 and 2.2.2-45

shows that a large value of Ts is required to minimize tail

pile-up. Even when the ratio of Ts to Xp is 25:1, the pile-

up from f2(t) is greater than that from fl(t) at rates of 104

counts/ second. At lower rates the relative effect of r be-
s

comes even more severe. Thus, values of rs in the range of

i00 times Xp appear required for optimal operation of a high-

rate system.

However, such large values of _s can produce other

adverse effects. For example, peak shifts can occur if the

counting rate changes appreciably during times for which

f2(t) is not neglibibly small! 4) If xs were made 250 vs, then

a time of nearly 1 ms would be required for'the transients

caused by an abrupt rate change to decay. Thus, an analyzer

used with a pulsed particle source, for example, should not

(4) Rice, Loc. Cit.
-45 -



possess secondary time constants comparable to the period of

the particle burst.

Furthermore, Fairstein (2) has shown that, if an

amplifier is overloaded, dead times and periods of non-linear

or inaccurate operation occur for times of the order of the

secondary time constant. Thus, an analyzer system operating

with large numbers of overload-producing input signals should

not possess secondary differentiating time constants larger

than typical analyzer dead times.

Usually a compromise between tail•pile-up and rate

shift or overload dependent effects is made by choosing

secondary time constants in the 25 to I00 _s time range. This

choice often is not particularly satisfactory if a truly opti-

mum, general purpose system is desired. A more effective

approach appears to be to direct couple the amplifier-analyzer

system so that the only differentiating time constants are

those involved in the primary pulse shaping networks. In this

way all pile-up from secondary coupling networks is eliminated,

and recovery from overload or rate changes is determined by the

fast primary networks.

(2)

-46-
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3.0 NOISE

Because noise is generated by random fluctuations of the

energy in various noise producing systems, the same basic

statistical analysis applied in Section 2 can be used to

calculate the effect of pulse shaping on amplifier or detec-

tor noise sources. The central limit theorem, discussed in

Section 2.1, implies that the distribution in amplifier output

voltage (or current) caused by noise will be approximately

Gaussian. This result follows from the fact that the output

noise signal at any given time is the composite of the ampli-

fier response to input noise impulses during a large number

of previous intervals. Because the number _ noise impulses

during one interval is not determined by themmber during any

other interval, the result for each interval can be considered

an independent random variable. The central limit theorem says

that the distribution of the sum of many random variables

approaches the normal distribution, with a mean (m) and stan-

dard deviation (o) given by

n

m = _. m.

i=l i
(3.0-1)

n n

o2 = F.. + F, Yi °° (3.o-2)
i=l i i,j=l j i j

i;j

where

m,a, =

7ij =

parameters of the distribution of the sum of n

variables, each with mean m. and standard deviation _.
1 1

correlation coefficient between variables i and j.
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Except for dc systems, the mean value is of no consequence,

since it will be eliminated by any ac couplings. If the mean

exists, it will represent an offset in the system.

The fluctuations in the output signals, related tothe

rms values, are usually defined as the noise signal. The rms

noise voltage (or equivalent input signal) is sometimes speci _

fied directly. More commonly in pulse-height analyzer systems,

the full-width-at-half-maximum of the pulse-height distribution

produced by a noiseless input signal is specified because of

its ease of measurement. The differential pulse-height spec-

trum for Gaussian noise is given by

i Vo2
P(V o) = exp (3.0-3)

yT¢ o 2°2

where P(Vo)dV represents the probability that V lies within

dV of Vo, and the mean value has been assumed to be zero. From

3.0-3, the full-width-at-half-maximum <F_HM) is mlated to the

rms value by

FWHM = (2"_/21n 2') o = 2.35 ° (3.0-4)

The remaining problem is the calculation of _. From the

rule for adding variances given by equation 3.0-2, and from the

fact that different frequencies can be treated as independent

variables, which follows from the orthogonality of the Fourier

transform, the average square of the output noise voltage

becomes

V12 = 1-!-- i IF(J )12 + Y2. ' I . ij
ao i=l i,j=l

i_j

-48- (3.0-5)



where F(j_) Fourier transform of the amplifier

current_pulse response

square average of the equivalent current

input noise per unit bandwidth (in Hertz)
.th

for noise from the i-- source

Yij

.th
correlation coefficient between the_--

and jt-_-hnoise source

Notice that if two noise sources are totally uncorrelated,

= 0, and they add as the sum of the squares. If they are

completely correlated, y = I, aad they add directly. An equa-

tion similar to 3.0-5 can be written using the Fourier trans-

form of the voltage impulse response and equivalent input

voltage noise sources. The representation used in a given pro-

blem becomes a matter of computational convenience.
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3.1 Typical Noise Sources

The choice of an optimal pulse shape depends upon the

nature of the noise voltages and currents mentioned in Sec-

tion 3.0. Several of these sources will be discussed here.

3.1.1 Resistor Noise

One of the most common sources of noise is thermal

energy in a resistor. For an ideal resistor, this noise is

independent of frequency or current flowing in the resistor

and can be calculated from fundamental theorems involving the

equal partition of energy.

Resistor noise may be expressed in either of tWO

equivalent ways using either a noise current or a noise voltage

generator. In both cases, the available noise power is constant

as a function of frequency and resistance and is given by:

e--Z
n T-ZR

PR = 4kT = - n (3.1.1-1)
R

where p

R noise power per unit bandwidth (in Hz)

n
mean-square noise voltage = 4kTR

per unit bandwidth

i 2
n

4kT
mean-square noise current = --
per unit bandwidth R

k -- Boltzman's constant

m absolute temperature

-50 -
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Some resistors may have noise levels considerably

in excess of that calculated by equation 3.1.1-1, which re-

presents a lower limit. High quality metal-film resistors

generally deviate negligibly from the above calculated noise

level.

3.1.2 Shot Noise

A common type of noise, present in most particle

detectors and amplifier elements, is shot noise. For example,

if a leakage current from such sources as photomultiplier dark

current or solid-state detector leakage is present at the ampl.i-

fier input, statistical variations of this current contribute

to the system noise. This noise arises because current flow

is really the motion of individual electrons. Thus, a current

can be written as

N(T)

i(T) = E q _ (t-ti) (3.1.2-1)
i=l

where q =

t °

1

and on the average

electronic charge

•th
time of the i impulse

_- = Nqq (3 1 2-2)
T " "

Applying the same techniques as in Section 2.2.1, the mean

effect of i on the amplifier output becomes

Vl = li m I/T N(___T)
T-_ i=l

V1 T F(O) -sl-

q _ (t-ti)f(t-ti)dt

(3.1.2-3)



For the usual case where at least one ac coupling is present

F(0) -- 0, then V 1 vanishes. The variance then becomes

T N(T)

---f lim q2/ I f(t-ti)f(t-tj)dt (3 1 2-4)V1 = T

T + _ 0 i,j=l

which can be reduced to

zq
V-_ = 2_ IF(j_)I 2 d_

--OO

N(T)

+ lim i _-_2_T ]F(Jt°) [2
Z_._,

T -+ ¢o
i,j=l

j>i

e-J_tij 8o3

(3.1.2-5)

Because t.. is often small compared to the pulse
i)

width, the summation over j can be replaced by an integral.

Thus, in the limit of infinite T, the second term of 3 1.2-5

becomes

GO

°/ r>Z f(t) j
i=l o o

f(t') dt' dt (3.1.2-6)
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The integral over t' is just the mean of f(t), which we have

assumed to vanish. Therefore, the rms output noise voltage

resulting from a current T is

xq [F(j_) [2 d_o (3 1 2-7)

resulting in the usual formula that the rms current noise per

unit bandwidth (in hertz) is

(3.1.2-8)

-53-



3.1.3 Junction-Transistor Noise

The noise sources involved in the typical junc-

tion transistor are basically extensions of the principles

mentioned in the previous two sections. One exception to

this rule is the I/f noise, which is poorly understood but

probably results from surface leakage effects and from ohmic

leakage across the collector-base junction (5).

A mid-frequency noise model (6) of a bipolar tran-

sistor is given in Figure 3.1.3-1, which uses the grounded

base configuration. The various noise sources given in this

figure are:

eNe = collector-current shot noise per unit bandwidth

iNb = base-current shot noise per unit bandwidth

IN c collector leakage current shot noise per unit
bandwidth

eNb = base-spreading resistance noise per unit bandwidth

From Section 3.1.2, the shot-noise components per unit bandwidth

are related to the relevant currents by

eN e2 = 2qic re2 (3.1.3-1)

IN_ = 2qI b (3.1.3-2)

iN2c = 2qIco • (3.1.3-3)

(5) W. H. Fonger, "A Determination of I/f Noise Sources in Semi-

conductor Diodes and Triodes," Transistors I, RCA Labora-
tories, Princeton, N.J., 1956.

(6) A. G. Di Loreto: Noise Optimization Techniques for Linear

Transistor Amplifiers U.S. Naval Ordnance Test Station,

C_a Lake, Calif., Oct. 1963 NAVWEPS Report 8381.
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where :

C
collector current

Ib = base current

Ico= collector leakage current

q = charge on the electron

The transistor has the usual relations'between

the parameters of equations 3.1.3-1, -2, and -3; namely

I

c (3.1.3-4)Ib = T

kT
r -- -- (3.1.3-5)
e qI c

where 8 = grounded-emitter current gain

k = Boltzmann's constant

T = absolute temperature

The noise sources can then be written

--7 = 2k__2

eNe = 2kTr e qI c

2 2ql
iNb = c

.---'2-

1Nc = 2qIco

e---7 = 4kTr bNb -56-

(3.1.3-6)

(3.1.3-7)

(3.1.3-8)

(3.1.3-9)

I



where the usual formula for resistive noise was used in

equation 3.1.3-9.

In addition to the above relations, one must

realize that base and collector shot noise may be highly cor-

related because they both result basically from the same cur-

- 2 = _ andrent. Thus, the correlation factor y between iNe

r _
e

INb" 2 is often taken to be unity. Moreover, I/f noise, which

so far has been neglected, adds directly to eNe , so that a

component in addition to pure shot noise exists for this

generator.

3.1.4 Field-Effect Transistor Noise

A noise equivalent circuit for a field-effect

transistor is shown in Figure 3.1.4-1. For mid-band frequencies

Van der Ziel(7'8)has shown that the noise sources are given

approximately by

• 2 _ 2ql + 4kT 2 2 ab (3 1 4-1)
INg g gm _ Cgs " "

INc- 2 _ 4kTg m a (3.1.4-2)

• 2 =
where 1Ng square average noise current per unit

bandwidth resulting from gate leakage

current (Ig).

(7) A. Van der Ziel, "Thermal Noise in Field-Effect Transis-

tors," Proc. IRE_ 50, p 1808, August 1962.

(8) A. Van der Ziel, "Gate Noise in Field-Effect Transistors

at Higher Frequencies," Proc. IRE, 51, p 461, March 1963.
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input >

Gate
V
g

f

Drain

_gmVg _ rd _iiNc

output

gm = transconductance

rd = drain output resistance

Figure 3.1.4-1: Grounded-Source Equivalent Noise Circuit
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• 2
1Nc square average noise current per unit

bandwidth resulting from thermal channel
noise.

C
gs

= gate-source capacity.

= angular frequency.

I
g

= gate leakage current.

= coefficient dependent on bias conditions

and sy_ific device. Theoretfcal optimum
value _') is of the order of 0_7.

coefficient dependent on bias and specific

device. Typically(8) b ranges between 0.35
and 0.40.

The result for the gate leakage current noise follows directly

from the analysis of shot noise given in Section 3.1.2. The

thermal channel noise results primarily from the fact that the

channel is resistive. The dependence of the gate noise current

on frequency arises from capacitive coupling to the channel

thermal noise. This noise is correlated to the thermal noise

source such that

i*Ng 1Nc" = ac_b "_ 4 kT _o Cg s (3.1.4-3)

complex correlation coefficient dependent
on bias and specific device. Typically(8)

c ranges between j 0.39 and j 0.42.

The thermal channel noise source is sometimes repre-

sented by a noise voltage generator between the source and ground.

In this representation, the equivalent noise voltage per unit

(7) Van der Ziel, Loc. Cit.

(8) Van der Ziel, Loc. Cit.
-59-
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bandwidth becomes

2 = 4kTb (3.1.4-4)
eNc gm

The above model fails to be accurate for frequen-

cies below I00 Hz where I/f noise becomes important. In this

region, the channel noise component rises with decreasing fre-

quency.
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3.2 The Charge-Sensitive Amplifier

One of the severe noise problems in the design of nuclear

pulse amplifiers arises when small signals from solid-state

detectors or from photomultiplier tubes must be amplified.

For reasons beyond the scope of this section, the charge-

sensitive amplifier configuration shown in Figure 3.2-1 is

generally employed. Thecalculation of the system noise for

such a configuration forms a useful example of the general

principles stated above.

The basic configuration consists of an operational ampli-

fier, followed by additional pulse-shaping networks [B(j_)].

The noise sources at the input represent the total rms equi-

valent noise per unit bandwidth from both amplifier and exter-

nal sources. In the following discussion the amplifier gain

(-A) will be assumed infinitely large so that the transfer

impedance is totally determined by the feedback and input net-

works (Rf, Cf, Rs, Cs). Under this approximation the output

noise voltage caused by input noise current (V2i) becomes:

F _O2 IB(j_) I2 "----- RE 2 dcoV2i = IN2

Jo 2 (1 _2 (3.2-1)
+ RE 2 CE 2 )

The voltage component is given by

V2v2

Ie-_ 1 + f+Cs 2 2

2_ (I + m2 Rf2 Cf2)

(3.2-2)
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Under the usual approximation that

[ (RfRsi]2 r>> !Rf Cf !

(c_+ cs) Rf + R j [ j
(3.2-3)

equation 3.2-3 reduces to

OO

2 IB(j_)I 2 eN2 Rf 2 (Cf + Cs)2 _2 d_o
= (3.2-4)

V2v 2_ (i + _2 )
0 Rf2 Cf2

Similarly, if a correlation y exists between eN and iN, this

component of output noise becomes

Q_

V2c2=f

o

. Rf+R s - ] I d_
I

2_ (i + _2 Rf2 Cf2)
(3.2-5)

Under the approximation given in equation 3.2-3, then

2/V2c

o

IB(j_)

2_ (1 + _2 )Rf 2 Cf 2

(3.2-6)
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If the noise sources eN and i N are approximately inde-
pendent of frequency, the total output noise becomes

2 = _I . IB(jm) I 2 d_

V2N 2_Cf2 IN2 (1+_o2_12)

+ y 2 •IN2 (Cf + C
F _ ]B(jm) J2

s) Jo (I+m2_12)

dLo

_ fo
+ eN2 (Cf + Cs)2 J0

IB(j ) J2 _02

(I+_02T 2)
I

d_o
(5.2-7)

where

Xl _ Rf Cf

Suppose that the pulse shaping networks are restricted

to simple RC or LR circuits so that B(j_) becomes the product

1
and Then, we can writeof termS of the form ij'+-mT I+j_T"

m j_T i m+n 1

B(j_) = H H l+j_. (3.2-8)
i=2 l+J_i i=m+l l

where there are m-I differentiating networks in B(j_) and n

integrating networks, and _i = _I is reserved for the
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preamplifier.

becomes

The total system current impulse response then

1 m j_. n 1
F(j_) = [I i [I (3.2-9)

j_Cf i=l I+j_T i i=m+l l+j_z i

The pulse shape corresponding to this frequency response can

be obtained from the following contour integral

f(t) = H _i n+m (3.2-.10)

2_Cf i=l C I'I (l+p'r i)
i=l

where the contour surrounds the negative half plane. Theabove

expression is based on the assumption that the detector produces

a charge Q during a time short compared to the zi' so that

i s = Q _ (t) (3.2-11)

noise energy.

then becomes

In order to compare various amplifier configurations, the

output noise voltage (eq. 3.2-7) is divided by the_ak of the

impulse response (eq. 3.2-10) to obtain an equivalent input

The square of the equivalent input noise energy

EN2

1 { _ /_ m2m- 2 d_o2_Q2gM2 (_i, _2, ••",_n+m) 1N2 n+m

D (I+_2_ 2)
i=l i

_
• m2m- 1 d_

4- ¥ eN2 IN2 (Cf + Cs) ] 8+m

[l (i+_2_. 2)
i=l I

F m2m dm
+ eN2 (Cf + CS)2 [

JO n+m 2)

i=l 1

-65 -
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where Q is the energy-to-charge conversion factor of the

detector and where gM is the maximum value of g(t;Tl,_2,

The function of g(t) is given by

,Tn+m)-

1 f m-I ePt
p dp

g(t) = -_ y n+m

C II (l+P_i)
i--i

(3.z-13)

If the noise currents and voltages (eN2 , iN2 ) do not

depend on the shaping time constants (Ti) , the equivalent,

input noise energy is a complete.ly symmetric function in the

_i" Therefore, the minimum value of EN2 will occur when all

the _i are equal. The remainder of the analysis will be re-

stricted to calculating the noise for this optimal case. (The

use of the preamplifier feedback network as one of the primary

pulse-shaping time constants gives less than optimal noise

performance because of the noise produced by Rf. However,

this increase is often negligibly small, so that t_ problems

at high rates caused by larger secondary differentiators can

be avoided by using Rf Cf as one of the primary pulse shaping

networks. Where low noise is the prime consideration, Rf is

often made as large as possible.) '

For the case where all _i are equal, then

2_jl J pm-l__ .ePt dpg(t) = (l+nT_n+ m (3.2-14)

C
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Changing variables to

Z -- pT

t' = tlt

(3.2-1s)

then one obtains

mfT zm-i Zt'
g(t') = g(t/_) = e dZ (3 2-16)

2_j (I+Z) n+m "

C

A similar variable change in the integrals of equation 3.2-12

results in

I {_ f_ X 2m-2 dX

EN2 =
27 Q2 IN2 _ (I+X_) n+m

hM2 JO

X 2m-I dX+ Y VeN2 iN2 (Cf + Cs)
(l+X2) n+m

o

(Cf_ +Cs)2 /___X 2m dX
fl+X2_n + m

o

(3.2-17)

where hM is the maximum value of

1 F Zm-I e Zt' dZ

h(t') = h(t/T) = --
2_j (I+Z) n+m

C
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Notice that hM is not a function of T, which only gives the

general scale factor for time.

The optimum value for _ is obviously given by the condi-

tion that the iN2 and _ components of equation 3.2-17 are

equal. Thus

/_0 _

.,, X TM dX

j J/o+ e-_ (I+X2) n+m
= (3.2-19)

_opt (C s Cf) i-_ x2m_2d X

(I+X2) n+m

with a corresponding minimum noise energy

V •(C s + Cf) eN2 iN2

EN2 opt = 2_ Q2 2
' h M Y (l+X2)n+m

x2m - 1 dX

+ 2
_I F °° 2m-] I_O F_

X 2dX ." x2m dX ]

Jo (l+X2)n+m (l+X2)n+mj

(5.2-20)

The integrals involved in the above two equations are tabulated (9)

(9) Dwight, "Tables of Integrals and other Mathematical Data,"

(The Macmillan Co., New York, N.Y.)
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and their evaluation gives

_ X 2m-I dX

Jo (l+X2)n+m

(m-l) :(n-l) '

2 (m+n-l) '

(3.2-21)

_o _ x2m- 2 dX
(I+X2) n+m

1 B (m-½ n+½) (3 2-22)
2 ) "

_0 _ X 2m dX(I÷X2) n+m
_- B (m+½, n-h) (3.2-23)

where

B(a,b)
r(a) r(b)

r(a+b)

r(a)

r (a+½)

(a-l) I for a-- integer

1-3-5...(2a-3)(2a-1 )'_

2 a
for a integer

r(a+l) = a r (a)
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Substituting these values one obtains

T

opt

ef N _,
(C s +Cf)_ i_ V2n-i

(3.2-24)

EN2,0p t

(C s +Cf) eN2 iN2 Y_-Y__

Q2 hM2 (n+m-l) ' 4_

(m-l) .'(n-l) :

+

11.3.5... (2m-l)] [1.3-5" • • (2n-l)]

2 n+m "_2n- 1) (2m-1

The evaluation of hM can be aided by observing that

equation 3.2-18 can be written as

(3.2-25)

h(t')
1

d m-1 _,_Zt' dZdt'm-i l+Z)n+m

e

(3.2-26)

The residue at the pole at Z = -I is easily evaluated to give

dm-I _ t n+m-I t' 7
h(t') - ' e- J (3.2-27)

at'm-1 L (n+m-1) ' ']

where as before t' = t/_. The peak value of h(t') can be

obtained by differentiating equation 3.2-27 again with respect

-70-



to t' and evaluating h(t') for the time at which the d_rivative

vanishes.

Two cases for the differentiation networks will be con-

sidered here - namely, single and double differentiation.

These cases correspond to m = 1 and m = 2, respectively. For

single differentiation one obtains

t,n e-t'

hl(t') = n! (3.2-28)

nn e-n
hM1 = n' (3.2-29)

with the peak occurring at a time

Tpl = n_ (3.2-30)

The optimum time constant and noise are given by

T
opt,l

T
pl

E 2
N,opt,1

(C s +Cf) _--_ 1

(C s +Cf) e-_ n

+

V+ Cf) _ (n.) 2(C s eN2 • ,

Q2(nn e-n)2

n. 2n+1"_2-_ (

-71- )
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As the value of n is increased (i.e. as more integrating

networks are used), the equivalent noise energy decreases

slowly. The optimum value is produced by letting n approach

infinity. In this case, the pulse response approaches a

Gaussian, given by

v 7

lira hl(t') = 1 exp - |(t'-n) 2 ,_ (3.2-34)

n-_ _ L 2n ]

This result was proved by Fairstein and Hahn (2), who recognized

that equation 3.2-28 was formally identical to the Poisson dis-

tribution, which, by the central limit theorem, approaches the

normal distribution for infinite n. The value of hM follows

directly from 3.2-34 or from Stirling's approximation for the

factorial, namely

lira n: : _-2_n-_ n n e -n [1 + 12nil ]j (3.2-35)
n -_

1 (3.2-36)

lim hM1 = _
n _ _

Applying Stirling's approximation to equation 3.2-33, one

obtains for the minimum noise energy under the assumptions of

simple RC or LR shaping and of a single differentiator

EN 2 s

,MIN 1 Q_/ _ ! 2
(C s + Cf) eN2 iN2 ! ]

= i0.5 y + 1.25 (3.2-37)

J
(2) Fairstein and Hahn, Loc. Cit.
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For no correlation the rms noise becomes

V_NN2 ' 1.12 "_,MIN 1 = Q (c s +cf) eN2 iN2 (3.2-38)

As shown in Section 2, minimizing baseline shifts requires

that at least two differentiating networks be empioyed. This

fact motivates the following calculation of the noise for the

case of m = 2. In this case the transient response becomes

h2(t, ) t 'n (n+l-t') e -t'= (3.2-39)
(n+l) '

with a maximum at Tp given by

In IhM2 = (n+l)

(3.2-40)

Tp2 : (n+l-'_n-$-l) -_ (3.2-41)

The optimum time constant and noise become

_opt, 2 = (Cs (3.2-.42)
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Tp2 (C s + Cf)___ 2___- _ (n+l --vr-n$-_)
(3.2-43)

EN2 ,opt,2

V __I+ iN2 (n+l.) 2(C s Cf) eN2

Q'2(n+l) [(n+l)-_/--n-_] 2n e -2 In+l-_-%--_]

X

f _ _/_ (n+l)'2 n 1.3.5...(2n-1)4_nCn+l) 4 _f2_

(3.2-44)

In this case the noise has a minimum at n = 2 and then

increases with increasing n. The limiting transient response

can be found from differentiating equation 3.2-34 to obtain

lim h2(t' ) = n-t' I(t'-n)2]n _f-2-_n exp - 2n (3.2-45)
n+oo

with a maximum given by

1
lira hM2 =

n -_-2_-_e (3.2-46)
n_oo

lim Tp2 = (n --_r_) _ (3.2-47)

n-+oo
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Substituting these values in equation 3.2-44 and taking the

limit of infinite n, one obtains for the noise energy for

the differentiated Gaussian

__ e(C s + Cf) eN2 iN2 ]

lim EN2,2 = Q2 _ + J
n-_o

(C s + Cf) eN2 iN2 1.36Y + 2.9

Q2
(3.2-48)

For no correlation the rms noise becomes

VEN2,2 = Q (C s + Cf) eN2 iN2 (3.2-49)
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The values of noise and optimum time constant for single

and double differentiation are given in Table I for several

values of n. Notice that the use of double differentiation

increases the rms noise by a factor of 1.2 compared to single

differentiation, if the optimum number of integrating networks

are used for both cases.

Before leaving this subject, it should be pointed out

that the restriction to the simple form for F(j_) given in

equation 3.2-9 is neither unique nor necessary. Although the

Gaussian pulse shape (m_l, n=_) appears optimum for this type

of pulse shaping, other forms involving delay lines can give

better noise performance_2Jt _. Furthermore, the Gaussian pulse

shape can be approximated simply with high accuracy if terms

of the form 1 + p_ are allowed in the numerator of the trans-

fer function (2'I0). If a pulse shape averaging to zero in a

short time, such as the double-differentiated waveform, is

required, then the above analysis indicates that the differ-

entiated Gaussian is not the optimum even for the simple pulse

shaping assumed. Double differentiation, double integration,

for example, gives significantly less noise. The optimum

pulse shape satisfying the zero-mean requirement may thus dif-

fer from the symmetrical waveform used in many advanced ampli-

fiers. The calculation of this optimum is beyond the scope of

this effort.

(2)

(lO)

Fairstein and Hahn, Loc. Cit.

Blankenship and Nowlin, "New Concepts in Nuclear Pulse

Amplifier Design," IEEE Transactions on Nuclear Science,

NS-13, p 495, June 1966.
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n

Numb er

of

Integrators

1

2

3

4

A

Uncorrelated

square-

average
noise

in units

of

Q2

B

Correlated

square-

average
noise

in units

of

m=l

1.87

1.46

1.38

1.36

1.25

m=2

2.04

1.82

1.88

2.04

2.95

m=l

0.60

0.54

0.53

0.52

0.50

m=2

0.75

0.78

0.81

0.90

1.36

T

opt

Opt imum
time

constant

in units

of

(Cs+Cf)_ _

m--I m=2

1.00 1.73

0.58 1.00

0.44 0.77

0.38 0.65

0 0

T
P

Peak

time

in units

of

 Cs+Cf)t/ 
• _'LT

m;1 m=2

1.00 1.02

1.16 1.27

1.32 1.54

1.52 1.80

h M

Peak

value
of

transient
for unit

input

m=l

0.3681

0.272 i

0.225_

0.196i

0

m=2

0.231

0.131

0.0903

0.0593

0

EN2,opt (A + y3)

Q 4.57 x i0 -17 C/KeV Silicon detector

Q 5.51 x 10 -17 C/KeV Germanium detector

TABLE I: Noise and Peak Values

for Optimized Shaping Using Simple Poles
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3.2.1 Field-Effect Transistor Input Stage

Commonly field-effect transistors are used for the

input stage because of their low noise. A typical such ampli-

fier is shown in Figure 3.2.1-1, where the FET noise sources

are shown explicitly. The formulas developed in Section 3.2

cannot be used directly because of the frequency dependence

of the FET noise. However, the following manipulation of fl_e

noisesources allows the final result to be represented in the

form of equations 3.2-1 and 3.2-4.

Assume that the total complex admittance from the

gate to ground is Ys and that the FET has a transconductance

gm" Then the total equivalent squared-average noise current

per unit bandwidth referred to the input becomes

i 2 =
gT

where

iNR2 =

l YsiNg + iNR + _m iNc + 2
(3.2.1-1)

4kT

Rf
squared-average feedback resistor noise

current per unit bandwidth

• 2 = 4kTag m1Nc

From equation 3.1.4-1 the gate noise current consists of two

components

ig i2 = 2qIg (3.2.1-2)

= 4kTab (_Cg)2 (3 2 1-3)
g2 gm s " "

where i
gl is uncorrelated with iNc and ig 2

has the correlation
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iNc

_ output

ILD

f
S

l

- Bias

i' ing _j

f

Detector

Rf

I

ILD = detector leakage current

C
S

total source capacitance including the FET input

capacitance and the detector capacitance

A = subsequent gain stages producing negligible noise

Figure 3.2.1-1: Typical FET Amplifier Configuration
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given in equation 3.1.4-3.

be written

The total noise current can then

2 = 2q(I + I + 4kT
igT g LD ) Rf + • __Ys . [2-

lg2 +gm 1NC
(3.2.1-4)

The final term can be expanded to give

.

ig22 1

2 _ "ig 1Nc
+

• 2

INc

gm 2

Y +
s

g _' i_2"!Nc
mI _.-r-_-_---_ ,
v V

ig22 (1- Icl 2) +

iNc2 IVsl2

gm 2

1 +

Ys-Vr 7

r 2

(3.2.1-s)

where c is the complex correlation coefficient.

If the real component of Ys is neglected as being

small compared to the capacitive component at frequencies con-

tributing most of the noise, then

Ys -" J(Cs + Cf) (3.2.1-6)

and

2 = 2 + I + 4kT
ig T q(Ig LD ) Rf

(3.2.1-7)

I 2

4kT a _o2 (Cs+Cf) 2 .2 Icl-_l_ cg s b Cg s
+ 1 + +

gm Cs + Cf (Cs+Cf) 2
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For

a = 0.7

b = 0.4

c = j0.4 (3.2.1-8)

Then

igT2 = 2q(I
+ I + 4kT

g LD ) Rf

2.8 kT _o2

gm

(Cs+Cf)2 [ 0.51 Cg s

1 + Cs+C f

0.4 C 2

+ gs I

(Cs+Cf) z j

(5.2.1-9)

The amplifier output noise becomes

¢O

igT 2 Rf 2 IB (jm) I 2 d.,
2 = (3 2 1-1o)

V2N (l+t_2 2 " "
o "_I)

where _i = Rf Cf

This equation becomes formally identical to equation 3 2-7
with

(
-- ) 0.51 Cg s 0.4 C 2
eN2 = 2.8kT 1 + + _ gs

gm 1 Cs+Cf (Cs÷Cf)Z

3.2.i-ii)

4kT
iN2 = 2q (I + ILD ) +

g Rf (3.2.i-i2)

y = 0 (3.2.i-13)
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For most spacecraft applications where cooling is

impractical, the detector leakage current noise is the dominat-

ing factor in i-_. The magnitude of Rf is limited to values

of the order of 1 M in order to maintain adequate amplifier and

detector bias stability. Furthermore, the feedback capacitor

(Cf) cannot be less than about 1 pF because unstable stray

capacitance would otherwise dominate the amplifier gain. For

such an application, typical values of the quantities of equa-

tions 3.2.1-11 and 3.2.1-12 are given in Table 2 for two cases

of detector leakage current at room temperature and for double

integration with double differentiation. Notice that the pre-

sence of detector leakage currentseverely limits resolution

even with the rather large detector capacity (I00 pF) assumed.

The calculated resolution is in good agreement with

values actually obtained in practical amplifiers (10,11,12)

Stringent selection of the FET, however, appears necessary to

obtain theoretical noise performance using the 2N3823. The data

of Blalock (12) appear to indicate that a I/f noise component

can be significant at frequencies above I0 KHz in some units.

Improvements in device manufacturing techniques will probably

reduce selection problems in the near future.

Improved resolution can also be obtained by cool-

ing (11,12) the FET and critical resistors to about -ll0°C. This

technique is particularly applicable to _ - spectroscopy experi-

ments using cooled germanium detectors. Also, Smith and Cline (II)

have shown that using several FETs in parallel for the input stage

can reduce noise for high detector capacities.

(10)

(11)

(12)

Blankenship and Nowlin, Loc. Cit.

Smith and Cline, "A Low-Noise Charge Sensitive Preamplifier

for Semiconductor Detectors Using Paralleled Field-Effect

Transistors," IEEE Transactions on Nuclear Science, NS-13

p 468, June 1966.

Blalock, "Wide-Band Low-Noise Charge Sensitive Preamplifier,"

IEEE Transactions on Nuclear Science, NS-13, p 457, June 1966.

-82 -



Ouantity

Detector Leakage

Current (IDL)

FET Leakage

Current (Ig)
(2N3823)

Transconductance (gm)
(2N3823)

Feedback Resistor (Rf)

Feedback Capacitor(Cf)

Input Capacitance plus

Detector Capacitance

for CD = i00 pF

(c)
S

2qIg

2qIDL

4kT

Rf

T
opt

Q (Silicon Detector)

E  opt 2'' (R IS)

z: " i

Eopt (FWHM)

High Detector

Leakage

-7
3 x 10 A

-i0
i0 A

4000 vmho

5 x 105

1 pF

107 pF

-29
3.2 x I0

-26
9.6 x I0

A2/Hz

A2/Hz

3.2 x 10 -26 A2/Hz

0.51 _s

4.57 x10 -17 C/KeV

7.51 KeY

17.7 KeV

Low Detector

Leakage

-10
<< 10 A

-i0
i0 A

4000 _mho

9
i0 g

I pF

107 pF

3.2 x 10 .29 A2/Hz

0

1.6 x 10 -29 A2/Hz

6.92 x 10 -14 A/VH'z"

1.68 x 10 .9 V/_rHz

2.62 vs

4.57 xl0 -17 C/KeV

3.32 KeY

7.70 KeV

TABLE 2: Typical Solid-State Detector

System Noise Levels
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3.3 Noise Counting Rates

In some applications the amplifier may be connected to

a discriminator with a threshold sufficiently low so that

the probability of its being exceeded by noise pulses is

significant. This noisecounting rate can severely limit

some low-energy experiments. In this section, the noise

counting rate will be derived based on statistical relations

developed by Rice (4)

Assume that the discriminator is an ideal device in

that it has zero dead time and hysteresis. Then if a

noise signal from an amplifier as shown in the upper curve

of Figure 3.3-1 is applied to the discriminator input, the

discriminator output is given by the lower curve. We wish

to calculate the average number of discriminator transitions

per second.

The noise counting rate is the number of times per

second that the amplifier output voltage exceeds the thresh-

old (D) with a positive slope. Consider the probability dis-

tribution function p(§,n;tl) d§dn_ which represents the prob-

ability that the amplifier output voltage V2(t ) has a value

§ within d§ and a slope n within dn at the time t I. If V2(t )

is equal to § at t = t I with a slope n, then a first order

expansion about tI gives

V2(t) _ § + n (t- tl) (3.3-1)

so that if V2(t ) = D within dt of tI then § and n must satisfy

the inequality

§ D
< tI + dt (3 3-2)tl < tl n

(4) Rice, Loc. Cit.
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v2(tl

Amplifier

J

Output "

.._-_ Disc Threshold._L_ _. .-Y

Discriminator

Output

_>
time

Figure 3.3-1: Discriminator Response

-85-



The condition that the slope be positive reduces this

inequality to

-ndt < § -D < 0 (3.3-3)

If we integrate over all allowed values of § and n, then

D

D-ndt

p(§,n;t I) d§dn

np(D,n;tl) dndt (3.3-4)

where
P+(D)dt = probability that V2(t ) crosses § = D

with positive slope at t I in dt, and

the limit of small dt has been taken

so that p(§,n;tl)_P(D,n;tl) throughout

the interval (§ = D-ndt, § = D).

If P(D,n;tl) does not depend on time, then P+(D) can

be trivially integrated over one second so that the rate R

becomes

R = np(D,n)dn (3.3-S)

By the central limit theorem, the distribution of ampli-

tude and derivative are known to be normal, and it can also

be shown that they are independenlt. Thus, p(D,n) becomes

D 2 n 2

1 -2o-_ 2oi _

p(D,n) : e e (3.3-6)
2_o0o I
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where 002 = square-average of V2(t )

Ol
2 square-average of

dV 2 (t)

dt

From the previous section

o0
2

2_

F(j_) I 2 d_ (3.3-7)

where iT(J_) -- total noise expressed as a complex input
current

F(j_) = Fourier transform of the amplifier trans-

fer impedance

Similarly because the Fourier transform of

then

dV 2
is j_F(j_),dt

Ol
f0 _

1

_o2 liT(J_)[ 2 IF(j )I 2 do_
2_

(3.3-8)

Substituting equations 3.3-6 into equation 3.3-5, one

obtains for the rate

D 2

°1 2o02
R = 2#o0 e (3.3-9)
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If F(j_) has the simple form given in equation 3.2-9

and if the equivalent input noise current can be represented

by equations 3.2-1, 3.2-4 and 3.2-6, then the quantities a0

and oI referred to the input become for equal time constants

°O 2 _ I { . x2m-2dX
IN2 )n+m= EN2 = 2_Q2hM 2 (l+X 2

_/ _ x2m-ld X
y eN2 iN2 (Cf + CSI (I+X2) n+m

eN2 (Cf + Cs12

T

f oo X 2m dX I

JO (l+X2)n+m j

(3.3-101

o 1
2

' 1

2_2Q2 2hM

-- f= X 2m dX

iN2 T
(I+X2) n+mJo

+ y (Cf + Cs) x2m+ldX
(l+X21 n+m

+ eN2 (Cfz + Cs)2 /oo

x2m+2dX

(l+X2) n+m

(3.3-111
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The integrals can be evaluated using equations 3.2-21 to

3.2-23 and

fO = x2m+idX(l+X2) n+m

m' (n-Z) :

2 (n+m- I)

(3.3-12)

_0 _ x2m+2dX =_l+X2)n+m 2
B(m + 3/2, n - 3/2) (3.3-13)

where the integrals for e-_ and for y diverge forn < 2. In

actual practice these integrals do not diverge even for n = 1

because of amplifier bandwith limitations neglected in the

approximation that A was very large for all frequencies of

interest. However, a significant excess counting rate can

occur when only single integration is used if voltage or

correlation noise is important.

Equation 3.3-9 can be written

K3 I -D2]
R = exp (3.3-14)

2_ 2E--_,_

where

D

K 3

= discrimination level in units of equivalent input

energy

= square-average eqivalent input noise energy

= constant of the order of one dependent on the details

of the pulse shaping
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Because EN2 has been considered in the previous section, the

only remaining problem is the determination of K3. This con-
stant is given by

iN---f_ B (m+ 1/2, n_ 1 / 2 ) + YVe-_ i-_(Cf+Cs)m

(n+m- I) '

:(n-2): eN2 (Cf+C s)2B(m+3/2,n- 3/2)

•

i-_B(m_i/2,n+i/2)+_\ _ i--_(Cf+Cs)(m-l):(n-l):

(n+m- I)

e--_(Cf+Cs) 2B(m+I/2,n-1/2)
+

(3.3-1s)

Evaluating the B-functions according to equation 3.2-23, one

obtains

B(m+I/2,n-i/2)
_ [1"3"5" "" (2m-l)] ! 1.3"5.'. (2n'l)]

(m+n-l)' (n-i/2) 2m+n

(3.3-16)

B (m+3/2,n-3/2)

r

[1"3.5.-. (2m-l)] [1.3"5-.. (2n-l)] Lm+ll2j

(m+n-l): (n-I/2) (n-3/2)2 m+n

(3.3-17 )

B (m- I/2,n+I/2)
[1.3"5"''(2m-1)] !l.3"5..'(2n-1)]L

(m+n-l)_ (m-I/2.) 2m+n

(3.3-18)
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and K32 becomes

K32 =

n-I/2
+

y Cf+Cs)m' (n-2) '.2m+n

_[1.3.-.(2m-I)] [1.3.. (2n-l)]

+ e--_(Cf+Cs). 2 (m+i/2)

(n-i/2) (n-3/2) T

i--_ _ y\/e_ i-_iCf+Cs)(m-l)l(n-l)[2m+n e--_(Cf+Cs)2
+ +

m-l/2 (n-i/2) T

(3.3-19)

Several special cases for K3 are of interest. For example,

for a photomultiplier tube amplifier, current noise resulting

from photomultiplier dark current may completely dominate. Then

K 3 becomes approximately

_,lm'i/2-" _._m_---_
K3i -z Vn_l---_-7_ = V -2ff-/-1 (3.3-20)

When an equal number of integrators and differentiators

used, K3i equals unity.

are

Another interesting case occurs when the shaping time con-

stant has been chosen to give minimum equivalent input noise

energy. Then

lopt = (C s + Cf)_ 2__[_ (3.3-21)

-91-



and the rate becomes

Rop t = (Cs+Cf)

K3 _2n_-I _
where K 4 = _-_ V2--m-7_i

exp (3.3-22)

The constant K 4 can be written as

I + a3Y
K42 = a I

1 + a2Y

(3.3-23)

where

a I

4mn-4m+l

4_2 (2n-3) (2m- i)

(3.3-24)

a 2 =

a 3 =

(m-l) ' (n-l) ! 2m+n-2

('_-l)(2n-1)[1.3...(2n-3)] [1.3...(2m-3)]

(3.3-25)

m(2n-l)a 2

4_2(n-1)(2m-1)a 1

(3.3-26)

for n _ 2.
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For x = 0, the noise rate becomes

i  [4mn4m-1 F= _ iexpR°P t 2_ (Cs+Cf) _ (2m-l) (2n- 3) j

(3.3-27)

For single differentiation, m = i and the constants in

K42 are given by

a I 0.0253_I (3.3-28)

0 159(n-I)' 2n• • (3.3-29)

]a2 -- _' [1.3-..(2n-3)

(2n-3_ (2n-l) (3.3-30)a3 = _ 3i T-I az

and the noise rate for x = 0 becomes

0._ ____ _,_-_RI'°pt : (Cs+Cf) e-_ i 2n-3

(3.3-31)

If n + _ so that Gaussian pulse shaping results, then

[ ]_.DZ
. 0,225 N exp

Rl,opt + (Cs+Cf) 2E--_

(3.3-32)
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For double differentiation, m = 2 and the constants in

K42 are given by

a

1 0.00844 I 8n-7)2n_3 (3.3-33)

0. 183 (n-l) '2n

a2 V_n---F'[1.3.••(2n-3)] (3.3-34)

12n-1 !2n-3! i n-I j a2 (3.3-35)a3 --- 2 _--_-]_

so that the rate for no correlation becomes

" / [ - I

= . :.3- exp: ' (3.3-36)R2'°pt (Cs+Cf) _] e--JL(zn ) LZEN7j',

For the case where two integrators are also used, then

0.275 i/_ _' _ -D2 ] (3 3-37)
= -- exp } .

R22'°pt (Cs+Cf)-V _ L2E'_ .]

Various values of the above quantities are given in

Table 3.
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Number of

integrators

(n)

2

3

4

OO

a I

m=l

0.127

0.0759

0.0658

0.0S06

m--2

0.0760

0.0478

0.0422

0.0338

m=l

0.368

0.380

0.385

0.400

a2

m=2

0.422

0.437

0.443

0.461

m=l

0.221

0.316

0.346

0.400

a 3

m=2

0.280

0.385

0.412

0.461

m=l m=2

0.356 0.276

0.275 0.218

0.256 0.205

0.225 0.184

TABLE 3: Noise Counting Rate Parameters
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For the amplifier discussed in Section 3.2.1 the rms

noise level, including detector leakage current, was 7.51 KeV.

The noise counting rate then becomes

I -D2 1R = 5.43 x l0 s exp _ (3.3-38)

where D = discrimination level in KeV, and the rate is in

counts per second. Several values of R are given in Table 4.
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Discrimination
Level
(KeV)

10

2O

4O

8O

Noise Counting
Rate

(Counts per second)

1.76 x 105

1.57 x i0 _

-i3.92 x I0

2.83 x 10 -7

(Amplifier parameters given in Table 2 for high detector

leakage. Pulse shaping was double-integration, double-

differentiation.)

TABLE 4: Typical Noise Counting Rates
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3.3.1 Photomultiplier Tube System

A common form of x-ray detector is shown in

Figure 3.3.1-1. The lower-energy limit of the discriminator

threshold (D) is often determined by the noise counting rate,

which mostly results from the photomultiplier dark current.

Dark-current noise is caused by statistical

variations of thermally generated currents within the photo-

multiplier. Most of this current results from single-electron

events generated by thermionic emission at the photocathode.

For this case the dark-current noise at the amplifier input

becomes from the discussion of shot noise in section 3.1.2.

"-'2--

iNd = 2qidG2 (3.3. i-i)

where id =

G

dark current referred to the photocathode

photomultiplier tube current gain

In actual practice this dark-current noise is increased over

the above because of events generated by thermionic emission

from the dynodes. A more correct expression then is (13)

ind = 2qidG2 1 + (3.3.1-2)

where k =

B _____

secondary emission ratio per stage,

usually of the _der of four.

statistical factor of the order of 1.5.

(13)Technical Manual PT-60, Radio Corporation of America

-98-



NaI

Crystal

Photo-

multiplie_

Tube !Disc - i
----_plifie_ riminat°r .__._[_ Output

b/ I _°_

to

Figure 3.3.1-1: X-Ray Detector System
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This current noise adds to the amplifier noise

in a similar manner that detector leakage current noise adds

to the total noise of a solid-state detector amplifier system.

However, because of the large value of current noise and small

input capacity compared to solid-state detector systems, the

optimum shaping time constant often becomes smaller than the

0.25 us time constant of the NaI scintillation decay. Thus,

the optimum time constant case developed in section 3.2 cannot

be used, and the noise for equal time constants must bedeter-

mined directly from equation 3.2-17. Evaluating the integrals

using equations 3.2-21, 22, and 23, one obtains for the equi-

valent squared-input noise energy

I

4_Q2hM2

i--_ TB(m-I/2, n+i/2)

$ y_/e-_ _ (Cf+Cs) (m-l).' (n-l)[

(m+n- i) :

e-_ (Cf+Cs)2 B(m+i/2, n-i/2)
+

(3.3.1- 3)

where

B(m-I/2, n+I/2)

B(m+I/2, n-i/2)

_ [1"3"5" "" (2m-l)] [1.3.5- .- (2n-l)]

(m+n-l): (m-i/2) 2m+n

[ !_ 1.3.5--.(2m-1 . cl-3-5...(2n-1]

(m+n-l)l (n-i/2) 2m+n

Thus,
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[i3 I ]FI3
2(m+n_l), 2m+n+lQ2h M

IN2 _

2m- I

+

e--_ (Cf+Cs1 2

• (2n-11

(m-l)' (n-I)_ 2m+n-I '[

_[1.3--.(2m-11][1-3.••(Zn-11]_ I
(3.3.1-41

If an amplifier of the type described in section

3.2.1 is used, then typically

(3.3.1-51

= 6.92 x i0

Cs+C f = 20 pF

- 14 A/'_z

where INa- T = amplifier contribution to i-_

The photomultiplier dark current depends strongly on the_be

used. For example, the RCA 4461 has a typical dark current

referred to the anode of 5 x 10 -9 A at a gain of 1 7 x l0 s

yielding
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-95 x i0
id = 5 =

1.7 x I0

-142.94 x i0 A

(3.3.1-6)

and from equation 3.3.1-2

T

iNd = 4.07 x 10 -22 A2/Hz (3.3.1-7)

The EMI 9524BR has a reduced dark current of typically

-16
id = 7.0 x i0 A (3.3.1-8)

with

T

iNd = 9.7 x l0 -24 A2/Hz (3.3.1-9)

The total current noise given by

--2- T --2--

iN : iNa + iNd (3.3.1-10)

becomes indistinguishable from the dark-current noise in

both cases.

If the time constant could be optimized for

noise, then its value would be of the order of I0 ns. There-

fore, as small a value as possible is chosen for T consistent

with the 0.25 _s NaI decay time constant. If double integra-

tion with double differentiation is used, then _ can be 1 _s

with about a 5% dependence of the gain on the NaI decay time

constant. For this case the voltage noise becomes completely

negligible, and
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Q2hM2(m+n-l)' 2m+n (2m-l)

(3.3.1-11)

The charge per unit incident energy (Q) is

related to the photomultiplier tube parameters by

(3.3.1-12)

where E 0 is the energy per photoelectron and is given by

E 0 :
CpCLC S (3.3.1-13)

photon energy at the peak of the combined

spectral response of the detector and photo-

multiplier tube. For NaI and SII response,

_m is typically-3.1 eV.

Cp photocathode efficiency = average number of

photoelectrons per collected photon. For

the RCA 4461, C is typically 0.14 and for
P

the EMI 9524BR typically 0.16.

CL light collection efficiency = probability that

a photon produced in the crystal reaches the

photocathode. Typically C L is 0.20.

C S scintillation efficiency = fraction of the

incident energy converted to useful photons.

For Nal, CS is 0.08.
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For the above typical values and for the RCA 4461 tube, then

E 0 _ 1.38 KeV (3.3.1-14)

and for the EblI 9524BR

E 0 = 1.21 KeV (3.3.i-is)

becomes

The total equivalent input noise energy then

_idE 0 I+ 1-3--.(2m-I) 1.3..-(2n-I

qhM2 (m+n-l)I 2m+n (2m-l)

(3.3.1-16)

and the noise counting rate becomes •using equations 3.3-14

and 3.3-20

expl2o21
• E N (3.3.1-17)

integration

For double differentiation with double

"ridE 0 I+

32 qhM2 (3.3.1-i8)

and

0.159
R = exp

r -D 2

--zL2EN] (3.3.1-19)

Several typical values of these quantities are given in

Table 5.
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These estimates should be treated with some

care, particularly when very low rates result. First,

the normal distribution used in equation 3.3-6 is only

approximately correct and fails to be accurate for

large values of D/_ 0. Second, noise from other sources

such as electrical pick-up, cosmic rays, or residual _

radioactivity in the phototube, crystal or mounting can

certainly dominate rates of the order of 10 -5 count_per

second. Third, the very strong dependence of R on EN

implies that only small errors in estimating the equi-

valent input noise energy can produce order-of-magnitude

changes in the noise counting rate.
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Parameter

id (Typical)

T

E0

EN2 (_IS)

R at D = 5.0 KeV

R at D = 7.07 KeV

R at D = 10.0 KeV

RCA 4461

2.94 x 10 -14 A

i _s

I. 38 KeV

0. 954 KeV 2

EMI 9524BR

-16
7.0 x i0 A

I _S

I. 21 KeV

-2
1.74 x i0

I
3.26 x i0 cts/s

-5
6.69 x I0 cts/s

2.81 x 10 -16 cts/s

-16
< I0

-16
< 10

-16
< 10

KeV 2

cts/s

cts/s

cts/s

TABLE 5: Typical Noise Counting Rates
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ATC SPECIFICATION .......

(FOR COMPONENT ENGINEERING USE ONLY)

MAGNETIC ELEMENT

DESIGN AND FABRICATION

INSTRUCTICiH

ELEMENT DESCRIPTION

INDUCTOR_ ,

PUESE SHAPIN_ j

2.0 HH

VENDOR NAME

VENDOR PART NO.

A'rc $K ETCH NO.

A-Io/7o3
PROJEC T

i Pna/u.c.



ATC SPECIFICATION

(FORCOMPONENT ENGINEERING USE ONLY)

INDUCTANCE. _).0 /_H

RESISTANCE /" _

ELECTRICAL. CHARACTERISTICS

INDUCTOR

@ O. / V RMS

= SIGNAL LEVEL RANGE

CURRENT RANGE

,T0+85"

CPS, , ADC

INDUCTANCE LINEARITY

TEMPERATURE RANGE --'-"_'-'_-

MAXIMUM LEVEL, V,

SELF RESONANT FREQUENCY _' 2-.OMH=-_

STRAY (EXTERNAL) MAGNETIC FIELD:

DC., GAUSS MAX @

"AC ' GAUSS MAX

0°I ,V

INCHES WITH

• - INCHES WITH •

,ADC _/000 CPS

,TO

TO__@__V__CPS.

ADC APPLIED.

, VRMS CPS APPLIED.

VOLTAGE COIL TO CORE, ro GROUND

.; _. o o •
.." : ., • q

VLNDOR NAM[

¥[NOOR PART • D

ATC_KE Tc. •
A-lO/7O3
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TOROID TYPE

htECHANICAL CONFIGURATION

ATC bPD.CIFICA I IUN

(FOR COMPONENT ENGINEERING USE ONLY)

WINDING INFORMATION

360 °

271 o0° 90

180 ° ..

SCHEMATIC

I O

LEAD BREAKOUT

2 l

OUTLINE

STUD:

TUBE,

HOLE;

MINIMUM IDENTIFICATION:

il i _, i .ll ,ALlI. SC,,E_.,A , ,,9. D-"S,C,,._T ....

2. ATC. /017"03

3. u .,• E;,IDOR.

4. ;E,R:AL _,

VENDOR NAME

VENDOR PART

_'_,$K E T C H I

A-IOllO3
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